2022-11-13 11:49:33 +08:00
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
|
2022-11-14 09:27:26 +08:00
|
|
|
from flass_attn.losses.cross_entropy_apex import CrossEntropyLossApex
|
2022-11-13 11:49:33 +08:00
|
|
|
|
|
|
|
|
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []))
|
|
|
|
|
# @pytest.mark.parametrize('dtype', [torch.float16])
|
|
|
|
|
@pytest.mark.parametrize('inplace_backward', [False, True])
|
|
|
|
|
# @pytest.mark.parametrize('inplace_backward', [False])
|
|
|
|
|
@pytest.mark.parametrize('vocab_size', [50257])
|
|
|
|
|
def test_cross_entropy_loss_apex(vocab_size, inplace_backward, dtype):
|
|
|
|
|
device = 'cuda'
|
|
|
|
|
rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
|
|
|
|
|
# set seed
|
|
|
|
|
torch.random.manual_seed(0)
|
|
|
|
|
batch_size = 8
|
|
|
|
|
seqlen = 128
|
|
|
|
|
x_pt = torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True)
|
|
|
|
|
x = x_pt.detach().clone().requires_grad_()
|
|
|
|
|
y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device)
|
|
|
|
|
y[torch.randperm(batch_size * seqlen)[:10]] = -100
|
|
|
|
|
model_pt = torch.nn.CrossEntropyLoss()
|
|
|
|
|
model = CrossEntropyLossApex(inplace_backward=inplace_backward)
|
|
|
|
|
out = model(x, y)
|
|
|
|
|
out_pt = model_pt(x_pt.float(), y)
|
|
|
|
|
assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)
|
|
|
|
|
|
|
|
|
|
g = torch.randn_like(out)
|
|
|
|
|
out_pt.backward(g)
|
|
|
|
|
out.backward(g)
|
|
|
|
|
assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
|