flash-attention/flash_attn/layers/rotary.py

270 lines
12 KiB
Python
Raw Normal View History

# Copyright (c) 2023, Tri Dao.
2022-05-21 05:21:58 +08:00
from typing import Tuple
import math
import torch
from einops import rearrange, repeat
2022-11-05 13:42:01 +08:00
import rotary_emb
2022-05-21 05:21:58 +08:00
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(torch.stack((-x2, x1), dim=-1), '... d two -> ... (d two)', two=2)
2022-05-21 05:21:58 +08:00
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
2022-11-05 13:42:01 +08:00
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
2022-11-05 13:42:01 +08:00
cos = repeat(cos, 's d -> s 1 (2 d)')
sin = repeat(sin, 's d -> s 1 (2 d)')
return torch.cat([x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:]], dim=-1)
2022-11-05 13:42:01 +08:00
class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(ctx, x, cos, sin, interleaved=False, inplace=False):
2022-11-05 13:42:01 +08:00
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
2022-11-05 13:42:01 +08:00
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
batch, seqlen, nheads, headdim = x.shape
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
2022-12-17 17:34:57 +08:00
assert sin.shape == (rotary_seqlen, rotary_dim // 2)
x_ro = x[..., :rotary_dim]
x1, x2 = x_ro.chunk(2, dim=-1) if not interleaved else (x_ro[..., ::2], x_ro[..., 1::2])
2022-11-05 13:42:01 +08:00
out = torch.empty_like(x) if not inplace else x
out_ro = out[..., :rotary_dim]
if inplace:
o1, o2 = x1, x2
else:
o1, o2 = (out_ro.chunk(2, dim=-1) if not interleaved
else (out_ro[..., ::2], out_ro[..., 1::2]))
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(x1, x2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), o1, o2, False)
2022-11-05 13:42:01 +08:00
if not inplace and rotary_dim < headdim:
out[..., rotary_dim:].copy_(x[..., rotary_dim:])
ctx.save_for_backward(cos, sin)
ctx.interleaved = interleaved
2022-11-05 13:42:01 +08:00
ctx.inplace = inplace
return out if not inplace else x
@staticmethod
def backward(ctx, do):
cos, sin = ctx.saved_tensors
_, seqlen, _, headdim = do.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
inplace = ctx.inplace
do_ro = do[..., :rotary_dim]
do1, do2 = (do_ro.chunk(2, dim=-1) if not ctx.interleaved
else (do_ro[..., ::2], do_ro[..., 1::2]))
2022-11-05 13:42:01 +08:00
dx = torch.empty_like(do) if not inplace else do
if inplace:
dx1, dx2 = do1, do2
else:
dx_ro = dx[..., :rotary_dim]
dx1, dx2 = (dx_ro.chunk(2, dim=-1) if not ctx.interleaved
else (dx_ro[..., ::2], dx_ro[..., 1::2]))
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(do1, do2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dx1, dx2, True)
2022-11-05 13:42:01 +08:00
if not inplace and rotary_dim < headdim:
dx[..., rotary_dim:].copy_(do[..., rotary_dim:])
return dx, None, None, None, None
2022-11-05 13:42:01 +08:00
apply_rotary_emb_func = ApplyRotaryEmb.apply
class ApplyRotaryEmbQKV_(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cos, sin, cos_k=None, sin_k=None, interleaved=False):
2022-11-05 13:42:01 +08:00
"""
qkv: (batch_size, seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
2022-12-22 06:17:58 +08:00
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
2022-11-05 13:42:01 +08:00
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of q and k.
"""
batch, seqlen, three, nheads, headdim = qkv.shape
assert three == 3
rotary_seqlen, rotary_dim = cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim
assert seqlen <= rotary_seqlen
2022-12-22 06:17:58 +08:00
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
q_ro = qkv[:, :, 0, :, :rotary_dim]
q1, q2 = q_ro.chunk(2, dim=-1) if not interleaved else (q_ro[..., ::2], q_ro[..., 1::2])
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(q1, q2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), q1, q2, False)
k_ro = qkv[:, :, 1, :, :rotary_dim]
k1, k2 = k_ro.chunk(2, dim=-1) if not interleaved else (k_ro[..., ::2], k_ro[..., 1::2])
2022-12-22 06:17:58 +08:00
rotary_emb.apply_rotary(k1, k2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), k1, k2, False)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
ctx.interleaved = interleaved
2022-11-05 13:42:01 +08:00
return qkv
@staticmethod
def backward(ctx, dqkv):
2022-12-22 06:17:58 +08:00
cos, sin, cos_k, sin_k = ctx.saved_tensors
2022-11-05 13:42:01 +08:00
_, seqlen, _, _, headdim = dqkv.shape
rotary_dim = cos.shape[-1]
rotary_dim *= 2
dq_ro = dqkv[:, :, 0, :, :rotary_dim]
dq1, dq2 = (dq_ro.chunk(2, dim=-1) if not ctx.interleaved
else (dq_ro[..., ::2], dq_ro[..., 1::2]))
2022-12-16 19:39:06 +08:00
rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:seqlen], 's d -> s 1 d'),
rearrange(sin[:seqlen], 's d -> s 1 d'), dq1, dq2, True)
dk_ro = dqkv[:, :, 1, :, :rotary_dim]
dk1, dk2 = (dk_ro.chunk(2, dim=-1) if not ctx.interleaved
else (dk_ro[..., ::2], dk_ro[..., 1::2]))
2022-12-22 06:17:58 +08:00
rotary_emb.apply_rotary(dk1, dk2, rearrange(cos_k[:seqlen], 's d -> s 1 d'),
rearrange(sin_k[:seqlen], 's d -> s 1 d'), dk1, dk2, True)
return dqkv, None, None, None, None, None
2022-11-05 13:42:01 +08:00
apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
2022-05-21 05:21:58 +08:00
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
2022-05-21 05:21:58 +08:00
"""
def __init__(self, dim: int, base=10000.0, interleaved=False, scale_base=None,
pos_idx_in_fp32=True, device=None):
2022-12-22 06:17:58 +08:00
"""
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq. In most cases this would
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16,
we add this option.
2022-12-22 06:17:58 +08:00
"""
2022-05-21 05:21:58 +08:00
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
2022-05-21 05:21:58 +08:00
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
2022-12-22 06:17:58 +08:00
self.scale_base = scale_base
2022-12-25 08:33:07 +08:00
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim) if scale_base is not None else None)
self.register_buffer("scale", scale, persistent=False)
2022-05-21 05:21:58 +08:00
2022-11-05 13:42:01 +08:00
self._seq_len_cached = 0
2022-05-21 05:21:58 +08:00
self._cos_cached = None
self._sin_cached = None
2022-12-22 06:17:58 +08:00
self._cos_k_cached = None
self._sin_k_cached = None
2022-05-21 05:21:58 +08:00
def _compute_inv_freq(self, device=None):
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device,
dtype=torch.float32) / self.dim))
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
2022-05-21 05:21:58 +08:00
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (seqlen > self._seq_len_cached or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())):
2022-11-05 13:42:01 +08:00
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
2022-05-21 05:21:58 +08:00
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
2022-12-22 06:17:58 +08:00
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
2022-12-22 06:17:58 +08:00
else:
power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2) / self.scale_base)
2022-12-25 08:33:07 +08:00
scale = self.scale.to(device=power.device) ** rearrange(power, 's -> s 1')
2022-12-22 06:17:58 +08:00
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
2022-05-21 05:21:58 +08:00
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
"""
qkv: (batch, seqlen, 3, nheads, headdim)
seqlen_offset: can be used in generation where the qkv being passed in is only the last
token in the batch.
"""
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
2022-12-22 06:17:58 +08:00
if self.scale is None:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
None, None, self.interleaved
2022-12-22 06:17:58 +08:00
)
else:
return apply_rotary_emb_qkv_(
qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
self._cos_k_cached[seqlen_offset:], self._sin_k_cached[seqlen_offset:],
self.interleaved
2022-12-22 06:17:58 +08:00
)