96 lines
4.1 KiB
Python
96 lines
4.1 KiB
Python
|
|
# Copyright (c) 2023, Tri Dao.
|
||
|
|
|
||
|
|
import math
|
||
|
|
import re
|
||
|
|
|
||
|
|
from collections import OrderedDict
|
||
|
|
|
||
|
|
import torch
|
||
|
|
import torch.nn.functional as F
|
||
|
|
|
||
|
|
from transformers import GPT2Config, GPTJConfig
|
||
|
|
|
||
|
|
|
||
|
|
def remap_state_dict_hf_gptj(state_dict, config):
|
||
|
|
def key_mapping_layers(key):
|
||
|
|
return re.sub(r'^transformer.h.', 'transformer.layers.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||
|
|
# Word embedding
|
||
|
|
def key_mapping_emb(key):
|
||
|
|
return re.sub(r'^transformer.wte.', 'transformer.embeddings.word_embeddings.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||
|
|
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||
|
|
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||
|
|
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
||
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
if getattr(config, 'tie_word_embeddings'):
|
||
|
|
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
||
|
|
else:
|
||
|
|
output_embeddings = state_dict.pop('lm_head.weight')
|
||
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||
|
|
state_dict['lm_head.weight'] = F.pad(
|
||
|
|
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||
|
|
)
|
||
|
|
|
||
|
|
# LayerNorm
|
||
|
|
def key_mapping_ln(key):
|
||
|
|
return re.sub(r'^transformer.layers.(\d+).ln_1.', r'transformer.layers.\1.norm1.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# MLP
|
||
|
|
def key_mapping_mlp(key):
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).mlp.fc_in.', r'transformer.layers.\1.mlp.fc1.', key)
|
||
|
|
key = re.sub(r'^transformer.layers.(\d+).mlp.fc_out.', r'transformer.layers.\1.mlp.fc2.', key)
|
||
|
|
return key
|
||
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
# Attention
|
||
|
|
for l in range(config.n_layer):
|
||
|
|
Wq = state_dict.pop(f'transformer.layers.{l}.attn.q_proj.weight')
|
||
|
|
Wk = state_dict.pop(f'transformer.layers.{l}.attn.k_proj.weight')
|
||
|
|
Wv = state_dict.pop(f'transformer.layers.{l}.attn.v_proj.weight')
|
||
|
|
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat(
|
||
|
|
[Wq, Wk, Wv], dim=0
|
||
|
|
)
|
||
|
|
# We don't store these biases
|
||
|
|
state_dict.pop(f'transformer.layers.{l}.attn.bias')
|
||
|
|
state_dict.pop(f'transformer.layers.{l}.attn.masked_bias')
|
||
|
|
def key_mapping_attn(key):
|
||
|
|
return re.sub(r'^transformer.layers.(\d+).attn.out_proj.',
|
||
|
|
r'transformer.layers.\1.mixer.out_proj.', key)
|
||
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||
|
|
|
||
|
|
return state_dict
|
||
|
|
|
||
|
|
|
||
|
|
def gptj_config_to_gpt2_config(gptj_config: GPTJConfig) -> GPT2Config:
|
||
|
|
headdim = gptj_config.n_embd // gptj_config.n_head
|
||
|
|
return GPT2Config(
|
||
|
|
vocab_size=gptj_config.vocab_size,
|
||
|
|
n_positions=0, # No absolute position embedding
|
||
|
|
n_embd=gptj_config.n_embd,
|
||
|
|
n_layer=gptj_config.n_layer,
|
||
|
|
n_head=gptj_config.n_head,
|
||
|
|
n_inner=gptj_config.n_inner,
|
||
|
|
activation_function=gptj_config.activation_function,
|
||
|
|
resid_pdrop=gptj_config.resid_pdrop,
|
||
|
|
embd_pdrop=gptj_config.embd_pdrop,
|
||
|
|
attn_pdrop=gptj_config.attn_pdrop,
|
||
|
|
layer_norm_epsilon=gptj_config.layer_norm_epsilon,
|
||
|
|
initializer_range=gptj_config.initializer_range,
|
||
|
|
bos_token_id=gptj_config.bos_token_id,
|
||
|
|
eos_token_id=gptj_config.eos_token_id,
|
||
|
|
# These are new arguments not in the original GPT2Config
|
||
|
|
prenorm=True,
|
||
|
|
parallel_block=True,
|
||
|
|
parallel_block_tied_norm=True,
|
||
|
|
rotary_emb_fraction=gptj_config.rotary_dim / headdim,
|
||
|
|
rotary_emb_interleaved=True,
|
||
|
|
tie_word_embeddings=False,
|
||
|
|
qkv_proj_bias=False,
|
||
|
|
out_proj_bias=False,
|
||
|
|
)
|