2023-08-22 02:05:06 +08:00
|
|
|
# Copyright (c) 2023, GGGGGGXY.
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
import json
|
|
|
|
|
import re
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
from transformers import GPT2Config, AutoConfig, PretrainedConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# only support Baichuan-7B now
|
|
|
|
|
def remap_state_dict_hf_baichuan(state_dict, config):
|
|
|
|
|
def key_mapping_layers(key):
|
|
|
|
|
return re.sub(r"^model.", "transformer.", key)
|
|
|
|
|
|
|
|
|
|
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
# Word embedding
|
|
|
|
|
def key_mapping_emb(key):
|
|
|
|
|
return re.sub(
|
|
|
|
|
r"^transformer.embed_tokens.",
|
|
|
|
|
"transformer.embeddings.word_embeddings.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
|
|
|
|
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
|
|
|
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
|
|
|
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
|
|
|
|
vocab_size = (
|
|
|
|
|
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
|
|
|
|
|
* pad_vocab_size_multiple
|
|
|
|
|
)
|
|
|
|
|
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
|
|
|
|
|
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
|
|
|
|
)
|
|
|
|
|
if getattr(config, "tie_word_embeddings"):
|
|
|
|
|
state_dict["lm_head.weight"] = state_dict[
|
|
|
|
|
"transformer.embeddings.word_embeddings.weight"
|
|
|
|
|
]
|
|
|
|
|
else:
|
|
|
|
|
output_embeddings = state_dict.pop("lm_head.weight")
|
|
|
|
|
# Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings
|
|
|
|
|
# differently.
|
|
|
|
|
vocab_size = (
|
|
|
|
|
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
|
|
|
|
|
* pad_vocab_size_multiple
|
|
|
|
|
)
|
|
|
|
|
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
|
|
|
|
state_dict["lm_head.weight"] = F.pad(
|
|
|
|
|
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# LayerNorm
|
|
|
|
|
def key_mapping_ln(key):
|
|
|
|
|
key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
|
|
|
|
|
key = re.sub(
|
|
|
|
|
r"^transformer.layers.(\d+).input_layernorm.",
|
|
|
|
|
r"transformer.layers.\1.norm1.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
key = re.sub(
|
|
|
|
|
r"^transformer.layers.(\d+).post_attention_layernorm.",
|
|
|
|
|
r"transformer.layers.\1.norm2.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
return key
|
|
|
|
|
|
|
|
|
|
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
# MLP
|
|
|
|
|
for l in range(config.n_layer):
|
|
|
|
|
w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight")
|
|
|
|
|
w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight")
|
|
|
|
|
# Our ordering is different
|
|
|
|
|
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat(
|
|
|
|
|
[w3, w1], dim=0
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def key_mapping_mlp(key):
|
|
|
|
|
return re.sub(
|
|
|
|
|
r"^transformer.layers.(\d+).mlp.down_proj.",
|
|
|
|
|
r"transformer.layers.\1.mlp.fc2.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
|
|
|
|
|
|
|
|
|
# Attention
|
|
|
|
|
def key_mapping_attn(key):
|
|
|
|
|
key = re.sub(
|
|
|
|
|
r"^transformer.layers.(\d+).self_attn.W_pack.",
|
|
|
|
|
r"transformer.layers.\1.mixer.Wqkv.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
key = re.sub(
|
|
|
|
|
r"^transformer.layers.(\d+).self_attn.o_proj.",
|
|
|
|
|
r"transformer.layers.\1.mixer.out_proj.",
|
|
|
|
|
key,
|
|
|
|
|
)
|
|
|
|
|
return key
|
|
|
|
|
|
|
|
|
|
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
|
|
|
|
for l in range(config.n_layer):
|
|
|
|
|
# pop rotary_emb.inv_freq from state dict
|
2023-12-22 14:49:55 +08:00
|
|
|
state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq", None)
|
2023-08-22 02:05:06 +08:00
|
|
|
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config:
|
2023-12-22 14:49:55 +08:00
|
|
|
# HACK: the config doesn't have say whether it's rotary or alibi.
|
|
|
|
|
# So we have to infer from the hidden size (7B -> rotary, 13B -> alibi).
|
2023-12-23 08:08:08 +08:00
|
|
|
# HACK: the config doesn't have say whether it uses norm head.
|
|
|
|
|
# So we have to infer from the vocab size
|
|
|
|
|
# (v1, vocab size 64k, no norm head; v2, vocab size 128k, norm head).
|
2023-12-22 14:49:55 +08:00
|
|
|
use_rotary = baichuan_config.hidden_size < 5000
|
2023-08-22 02:05:06 +08:00
|
|
|
return GPT2Config(
|
|
|
|
|
vocab_size=baichuan_config.vocab_size,
|
|
|
|
|
n_positions=0, # No absolute position embedding
|
|
|
|
|
n_embd=baichuan_config.hidden_size,
|
|
|
|
|
n_layer=baichuan_config.num_hidden_layers,
|
|
|
|
|
n_head=baichuan_config.num_attention_heads,
|
|
|
|
|
n_inner=baichuan_config.intermediate_size,
|
|
|
|
|
activation_function="swiglu", # Hardcode since HF calls it 'silu'
|
|
|
|
|
# baichuan doesn't have dropout, idk if it's because they only release the inference code
|
|
|
|
|
resid_pdrop=0.0,
|
|
|
|
|
embd_pdrop=0.0,
|
|
|
|
|
attn_pdrop=0.0,
|
|
|
|
|
layer_norm_epsilon=baichuan_config.rms_norm_eps,
|
|
|
|
|
initializer_range=baichuan_config.initializer_range,
|
|
|
|
|
bos_token_id=baichuan_config.bos_token_id,
|
|
|
|
|
eos_token_id=baichuan_config.eos_token_id,
|
|
|
|
|
# These are new arguments not in the original GPT2Config
|
|
|
|
|
pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything
|
|
|
|
|
rms_norm=True,
|
2023-12-22 14:49:55 +08:00
|
|
|
rotary_emb_fraction=1.0 if use_rotary else 0.0,
|
2023-08-22 02:05:06 +08:00
|
|
|
rotary_emb_interleaved=False,
|
2023-12-22 14:49:55 +08:00
|
|
|
use_alibi=not use_rotary,
|
|
|
|
|
use_flash_attn=not use_rotary, # Alibi code path requires flash_attn
|
2023-08-22 02:05:06 +08:00
|
|
|
tie_word_embeddings=False,
|
2023-12-23 08:08:08 +08:00
|
|
|
norm_head=baichuan_config.vocab_size > 70000,
|
2023-08-22 02:05:06 +08:00
|
|
|
qkv_proj_bias=False,
|
|
|
|
|
out_proj_bias=False,
|
|
|
|
|
mlp_fc1_bias=False,
|
|
|
|
|
mlp_fc2_bias=False,
|
|
|
|
|
)
|