diff --git a/flash_attn/layers/patch_embed.py b/flash_attn/layers/patch_embed.py new file mode 100644 index 0000000..4b9b73a --- /dev/null +++ b/flash_attn/layers/patch_embed.py @@ -0,0 +1,56 @@ +# We use the same API as https://github.com/rwightman/pytorch-image-models/blob/v0.6.11/timm/models/layers/patch_embed.py +# But we use nn.Linear instead of Conv2d and it's about 8x faster. + +from functools import partial + +import torch.nn as nn +from torch import _assert +from torch.nn.modules.utils import _pair + +from einops import rearrange + +try: + from flash_attn.ops.fused_dense import FusedDenseTD +except ImportError: + FusedDenseTD = None + + +class PatchEmbed(nn.Module): + """ 2D Image to Patch Embedding + """ + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + embed_dim=768, + norm_layer=None, + flatten=True, + bias=True, + fused_bias_fc=False, + ): + super().__init__() + img_size = _pair(img_size) + patch_size = _pair(patch_size) + self.img_size = img_size + self.patch_size = patch_size + self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + self.flatten = flatten + if fused_bias_fc and FusedDenseTD is None: + raise ImportError('fused_dense is not installed') + + linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDenseTD + self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias) + self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() + + def forward(self, x): + _, _, H, W = x.shape + _assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") + _assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") + x = self.proj(rearrange(x, 'b c (h p1) (w p2) -> b h w (c p1 p2)', + p1=self.patch_size[0], p2=self.patch_size[1])) + if self.flatten: + x = rearrange(x, 'b h w c -> b (h w) c') + x = self.norm(x) + return x