[GPT] Implement parallel LLaMa

This commit is contained in:
Tri Dao 2023-07-28 15:52:48 -10:00
parent 840f7925a0
commit 184b992dcb
3 changed files with 171 additions and 38 deletions

View File

@ -527,6 +527,15 @@ def shard_state_dict_tp(state_dict, config, world_size, rank):
dim = x.shape[-1] // world_size
state_dict[key] = x[..., rank * dim:(rank + 1) * dim]
def shard_gatedmlp_fc1_dim(state_dict, key):
if key in state_dict:
x = state_dict[key]
dim = x.shape[0] // world_size // 2
state_dict[key] = rearrange(
rearrange(x, "(two o) ... -> two o ...", two=2)[:, rank * dim:(rank + 1) * dim],
"two o ... -> (two o) ..."
)
def shard_qkv_headdim(state_dict, key):
if key in state_dict:
n_head = config.n_head
@ -559,6 +568,10 @@ def shard_state_dict_tp(state_dict, config, world_size, rank):
shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
if rank != 0:
state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias', None)
if config.activation_function in ["glu", "swiglu", "geglu"]:
shard_gatedmlp_fc1_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
shard_gatedmlp_fc1_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
else:
shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')

View File

@ -300,8 +300,6 @@ def test_falcon_parallel_generation(model_name, world_size):
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
device=device)
torch.distributed.barrier()
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)

View File

@ -13,12 +13,15 @@ current_dir = Path(__file__).parent.absolute()
import torch
import pytest
from einops import rearrange
from transformers import LlamaConfig, LlamaTokenizer
from transformers.models.llama.modeling_llama import LlamaForCausalLM
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
from flash_attn.models.llama import remap_state_dict_meta_llama, llama_config_to_gpt2_config
from flash_attn.models.llama import config_from_checkpoint, state_dicts_from_checkpoint
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache
@ -38,6 +41,7 @@ def test_llama_state_dict(model_name):
@pytest.mark.parametrize('model_name', ["7B", "13B"])
# @pytest.mark.parametrize('model_name', ["7B"])
def test_llama_optimized(model_name):
"""Check that our implementation of LLaMa (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
@ -59,7 +63,7 @@ def test_llama_optimized(model_name):
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict, strict=False)
model.load_state_dict(pretrained_state_dict)
model.eval()
torch.manual_seed(0)
@ -86,6 +90,7 @@ def test_llama_optimized(model_name):
model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
torch_dtype=dtype, device_map={"": device})
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state
logits_hf = model_hf(input_ids).logits
del model_hf
@ -104,7 +109,6 @@ def test_llama_optimized(model_name):
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel"
@pytest.mark.skip(reason="Tensor Parallel is not implemented for GatedMLP yet")
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('model_name', ["13B"])
def test_llama_parallel(model_name, world_size):
@ -118,7 +122,6 @@ def test_llama_parallel(model_name, world_size):
current_dir.parent.parent / 'checkpoints')) / 'llama'
dtype = torch.float16
device = 'cuda'
config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
config.use_flash_attn = True
config.fused_bias_fc = True
@ -139,8 +142,7 @@ def test_llama_parallel(model_name, world_size):
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank),
strict=False)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
torch.manual_seed(0)
@ -151,21 +153,30 @@ def test_llama_parallel(model_name, world_size):
device=device)
with torch.no_grad():
out = model.transformer(input_ids)
out, _ = all_gather_raw(out, process_group=process_group)
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
logits = model(input_ids).logits
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
logits, _ = all_gather_raw(logits, process_group)
logits = rearrange(logits, '(n b) ... d -> b ... (n d)', b=batch_size)
del model
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
device_map='auto')
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f'{model_name}-hf', device_map="auto"
)
model_ref.eval()
with torch.no_grad():
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
logits_ref = model_ref(input_ids).logits.to(device=device)
del model_ref
model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf',
torch_dtype=dtype, device_map="auto")
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map="auto"
)
model_hf.eval()
with torch.no_grad():
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
logits_hf = model_hf(input_ids).logits.to(device=device)
del model_hf
@ -183,7 +194,8 @@ def test_llama_parallel(model_name, world_size):
assert (logits - logits_ref).abs().max().item() < 2 * (logits_hf - logits_ref).abs().max().item()
@pytest.mark.parametrize('model_name', ["7B", "13B"])
# @pytest.mark.parametrize('model_name', ["7B", "13B"])
@pytest.mark.parametrize('model_name', ["7B"])
def test_llama_generation(model_name):
checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
current_dir.parent.parent / 'checkpoints')) / 'llama'
@ -231,7 +243,7 @@ def test_llama_generation(model_name):
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
model = GPTLMHeadModel(config, device=device, dtype=dtype)
model.load_state_dict(pretrained_state_dict, strict=False)
model.load_state_dict(pretrained_state_dict)
model.eval()
print('Without CUDA graph')
@ -274,3 +286,113 @@ def test_llama_generation(model_name):
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
assert torch.equal(logits_cg, logits)
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation"
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('model_name', ["13B"])
def test_llama_parallel_generation(model_name, world_size):
"""Check that our implementation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
from apex.transformer import parallel_state
checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR',
current_dir.parent.parent / 'checkpoints')) / 'llama'
dtype = torch.float16
config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name))
config.use_flash_attn = False
config.fused_bias_fc = True
config.fused_mlp = False # We don't have fused GatedMLP yet
config.fused_dropout_add_ln = False
config.residual_in_fp32 = True
config.pad_vocab_size_multiple = 8 * world_size
config.sequence_parallel = False # Need to set this to False for generation
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
process_group = parallel_state.get_tensor_model_parallel_group()
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
device=device)
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
# GPU0 and GPU1 and things would hang
torch.cuda.set_device(device)
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts]
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
model.eval()
print('Without CUDA graph')
out = model.generate(
input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
vocab_size=config.vocab_size, fused_ft_kernel=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True, output_scores=True, timing=True
)
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print('With CUDA graph')
out_cg = model.generate(
input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
vocab_size=config.vocab_size, fused_ft_kernel=True, cg=True,
# teacher_outputs=out_hf.sequences,
return_dict_in_generate=True, output_scores=True, timing=True
)
del model
parallel_state.destroy_model_parallel()
if rank == 0:
# Without device_map, the model is loaded on the CPU, which is very slow
model_hf = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map="auto"
)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
with torch.inference_mode():
out_hf = model_hf.generate(
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True,
output_scores=True
)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
del model_hf
model_ref = LlamaForCausalLM.from_pretrained(
Path(checkpoint_path) / f'{model_name}-hf', device_map="auto"
)
model_ref.eval()
with torch.inference_mode():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
del model_ref
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
hf_error = (logits_hf - logits_ref).abs().max().item()
print(f'HF fp16 logits max diff: {hf_error}')
print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
assert torch.equal(logits_cg, logits)