[MLP] Implement SwiGLU with torch jiterator

This commit is contained in:
Tri Dao 2023-09-04 15:43:53 -07:00
parent 37c6e05406
commit 3557e0bb8f
2 changed files with 41 additions and 1 deletions

View File

@ -1,10 +1,16 @@
# Copyright (c) 2022, Tri Dao. # Copyright (c) 2023, Tri Dao.
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.distributed import ProcessGroup from torch.distributed import ProcessGroup
try:
from flash_attn.ops.activations import swiglu
except ImportError:
swiglu = None
try: try:
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
except ImportError: except ImportError:
@ -120,6 +126,9 @@ class GatedMlp(nn.Module):
y = self.fc1(x) y = self.fc1(x)
if self.activation == F.sigmoid: # Special case for GLU if self.activation == F.sigmoid: # Special case for GLU
y = F.glu(y, dim=-1) y = F.glu(y, dim=-1)
elif self.activation == F.silu and swiglu is not None: # Special case for SwiGLU
y, gate = y.chunk(2, dim=-1)
y = swiglu(gate, y)
else: else:
y, gate = y.chunk(2, dim=-1) y, gate = y.chunk(2, dim=-1)
y = y * self.activation(gate) y = y * self.activation(gate)

View File

@ -102,3 +102,34 @@ def sqrelu_fwd(x):
@torch.jit.script @torch.jit.script
def sqrelu_bwd(g, x): def sqrelu_bwd(g, x):
return (2.0 * g * F.relu(x)).to(dtype=x.dtype) return (2.0 * g * F.relu(x)).to(dtype=x.dtype)
swiglu_fwd_codestring = """
template <typename T> T swiglu_fwd(T x, T y) {
return float(x) * float(y) / (1.0f + ::exp(-float(x)));
}
"""
swiglu_bwd_codestring = """
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
dy = float(x) * x_sigmoid * float(g);
}
"""
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
class SwiGLUFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
return swiglu_fwd(x, y)
@staticmethod
def backward(ctx, dout):
x, y = ctx.saved_tensors
return swiglu_bwd(x, y, dout)
swiglu = SwiGLUFunction.apply