[MLP] Change the check for out_features being None

This commit is contained in:
Tri Dao 2023-08-10 00:04:38 -07:00
parent d30f2e1cd5
commit 364a5b4a71

View File

@ -22,8 +22,8 @@ class Mlp(nn.Module):
bias1=True, bias2=True, return_residual=False, device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features * 4
out_features = out_features if out_features is not None else in_features
hidden_features = hidden_features if hidden_features is not None else in_features * 4
self.return_residual = return_residual
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
self.activation = activation
@ -45,8 +45,8 @@ class ParallelMLP(nn.Module):
super().__init__()
assert ColumnParallelLinear is not None, "Need to install fused_dense"
assert RowParallelLinear is not None, "Need to install fused_dense"
out_features = out_features or in_features
hidden_features = hidden_features or in_features * 4
out_features = out_features if out_features is not None else in_features
hidden_features = hidden_features if hidden_features is not None else in_features * 4
self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group, bias=bias1,
sequence_parallel=sequence_parallel, **factory_kwargs)
self.activation = activation
@ -67,8 +67,9 @@ class GatedMlp(nn.Module):
device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or int(8 * in_features / 3)
out_features = out_features if out_features is not None else in_features
hidden_features = (hidden_features if hidden_features is not None
else int(8 * in_features / 3))
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
self.return_residual = return_residual
self.fc1 = nn.Linear(in_features, 2 * hidden_features, bias=bias1, **factory_kwargs)
@ -94,8 +95,9 @@ class ParallelGatedMlp(nn.Module):
sequence_parallel=True, device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or int(8 * in_features / 3)
out_features = out_features if out_features is not None else in_features
hidden_features = (hidden_features if hidden_features is not None
else int(8 * in_features / 3))
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
if ColumnParallelLinear is None or RowParallelLinear is None:
raise ImportError('fused_dense is not installed')