Mention Alibi in README
This commit is contained in:
parent
8448c02889
commit
50d144c906
23
README.md
23
README.md
@ -82,7 +82,8 @@ from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
|
||||
```
|
||||
|
||||
```python
|
||||
flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1)):
|
||||
flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=None, causal=False,
|
||||
window_size=(-1, -1), alibi_slopes=None):
|
||||
"""dropout_p should be set to 0.0 during evaluation
|
||||
If Q, K, V are already stacked into 1 tensor, this function will be faster than
|
||||
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
||||
@ -96,13 +97,16 @@ Arguments:
|
||||
Default to 1 / sqrt(headdim).
|
||||
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
||||
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
||||
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
|
||||
the attention score of query i and key j.
|
||||
Return:
|
||||
out: (batch_size, seqlen, nheads, headdim).
|
||||
"""
|
||||
```
|
||||
|
||||
```python
|
||||
flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1)):
|
||||
flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False,
|
||||
window_size=(-1, -1), alibi_slopes=None):
|
||||
"""dropout_p should be set to 0.0 during evaluation
|
||||
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
||||
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
||||
@ -121,6 +125,9 @@ Arguments:
|
||||
Default to 1 / sqrt(headdim).
|
||||
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
||||
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
||||
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
||||
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
||||
is added to the attention score of query i and key j.
|
||||
Return:
|
||||
out: (batch_size, seqlen, nheads, headdim).
|
||||
"""
|
||||
@ -141,6 +148,7 @@ def flash_attn_with_kvcache(
|
||||
causal=False,
|
||||
window_size=(-1, -1), # -1 means infinite context window
|
||||
rotary_interleaved=True,
|
||||
alibi_slopes=None,
|
||||
):
|
||||
"""
|
||||
If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
|
||||
@ -183,10 +191,9 @@ def flash_attn_with_kvcache(
|
||||
If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
|
||||
rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
|
||||
(i.e. GPT-NeoX style).
|
||||
num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
|
||||
If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
|
||||
to automatically determine the number of splits.
|
||||
Don't change this unless you know what you are doing.
|
||||
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
||||
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
||||
is added to the attention score of query i and key j.
|
||||
|
||||
Return:
|
||||
out: (batch_size, seqlen, nheads, headdim).
|
||||
@ -262,6 +269,10 @@ Implement sliding window attention (i.e., local attention). Thanks to [Mistral
|
||||
AI](https://mistral.ai/) and in particular Timothée Lacroix for this
|
||||
contribution. Sliding window was used in the [Mistral 7B](https://mistral.ai/news/announcing-mistral-7b/) model.
|
||||
|
||||
### 2.4: ALiBi (attention with linear bias)
|
||||
|
||||
Implement ALiBi (Press et el., 2021). Thanks to Sanghun Cho from Kakao Brain for this contribution.
|
||||
|
||||
## Performance
|
||||
|
||||
We present expected speedup (combined forward + backward pass) and memory savings from using FlashAttention against PyTorch standard attention, depending on sequence length, on different GPUs (speedup depends on memory bandwidth - we see more speedup on slower GPU memory).
|
||||
|
||||
Loading…
Reference in New Issue
Block a user