diff --git a/hopper/test_flash_attn.py b/hopper/test_flash_attn.py index 8c90988..5065aee 100644 --- a/hopper/test_flash_attn.py +++ b/hopper/test_flash_attn.py @@ -236,8 +236,8 @@ def test_flash_attn_varlen_output( batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True ) - query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random") - key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random") + query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random", zero_lengths=False) + key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random", zero_lengths=True) # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full') ( @@ -312,11 +312,16 @@ def test_flash_attn_varlen_output( dk_ref, dv_ref, ) = torch.autograd.grad(out_ref, (q, k, v), g) + zero_masking = rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1") + dk_ref.masked_fill_(zero_masking, 0.0) + dv_ref.masked_fill_(zero_masking, 0.0) ( dq_pt, dk_pt, dv_pt, ) = torch.autograd.grad(out_pt, (q, k, v), g) + dk_pt.masked_fill_(zero_masking, 0.0) + dv_pt.masked_fill_(zero_masking, 0.0) dq = dq_pad_fn(dq_unpad) print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}") print(f"dK max diff: {(dk - dk_ref).abs().max().item()}") diff --git a/tests/test_util.py b/tests/test_util.py index 513a9b8..354dc00 100644 --- a/tests/test_util.py +++ b/tests/test_util.py @@ -5,16 +5,23 @@ from einops import rearrange, repeat from flash_attn.bert_padding import pad_input, unpad_input -def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"): +def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", zero_lengths=False): assert mode in ["full", "random", "third"] if mode == "full": lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32) elif mode == "random": lengths = torch.randint( - max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device + max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device ) elif mode == "third": lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device) + + if zero_lengths: + # Generate zero-lengths every 5 batches and the last batch. + for i in range(batch_size): + if i % 5 == 0: + lengths[i] = 0 + lengths[-1] = 0 padding_mask = ( repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths ) @@ -251,4 +258,5 @@ def attention_ref( output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0) + output.masked_fill_(rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1"), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)