[CI] Use official Pytorch 2.1, add CUDA 11.8 for Pytorch 2.1

This commit is contained in:
Tri Dao 2023-10-03 22:18:11 -07:00
parent 21c3b0d8f6
commit 5e525a8dc8
4 changed files with 12 additions and 13 deletions

View File

@ -44,7 +44,7 @@ jobs:
# manylinux docker image, but I haven't figured out how to install CUDA on manylinux.
os: [ubuntu-20.04]
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
torch-version: ['1.12.1', '1.13.1', '2.0.1', '2.1.0.dev20230731']
torch-version: ['1.12.1', '1.13.1', '2.0.1', '2.1.0']
cuda-version: ['11.6.2', '11.7.1', '11.8.0', '12.1.0', '12.2.0']
# We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not.
# Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI.
@ -58,7 +58,7 @@ jobs:
# Pytorch >= 2.0 only supports Python >= 3.8
- torch-version: '2.0.1'
python-version: '3.7'
- torch-version: '2.1.0.dev20230731'
- torch-version: '2.1.0'
python-version: '3.7'
# Pytorch <= 2.0 only supports CUDA <= 11.8
- torch-version: '1.12.1'
@ -73,17 +73,15 @@ jobs:
cuda-version: '12.1.0'
- torch-version: '2.0.1'
cuda-version: '12.2.0'
# Pytorch >= 2.1 only supports CUDA >= 12.1
- torch-version: '2.1.0.dev20230731'
# Pytorch >= 2.1 only supports CUDA >= 11.8
- torch-version: '2.1.0'
cuda-version: '11.6.2'
- torch-version: '2.1.0.dev20230731'
- torch-version: '2.1.0'
cuda-version: '11.7.1'
- torch-version: '2.1.0.dev20230731'
cuda-version: '11.8.0'
# Pytorch >= 2.1 with nvcc 12.1.0 segfaults during compilation, so
# we only use CUDA 12.2. setup.py as a special case that will
# download the wheel for CUDA 12.2 instead.
- torch-version: '2.1.0.dev20230731'
- torch-version: '2.1.0'
cuda-version: '12.1.0'
steps:
@ -132,7 +130,7 @@ jobs:
# We want to figure out the CUDA version to download pytorch
# e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116
# This code is ugly, maybe there's a better way to do this.
export TORCH_CUDA_VERSION=$(python -c "import os; minv = {'1.12': 113, '1.13': 116, '2.0': 117, '2.1': 121}[os.environ['MATRIX_TORCH_VERSION']]; maxv = {'1.12': 116, '1.13': 117, '2.0': 118, '2.1': 121}[os.environ['MATRIX_TORCH_VERSION']]; print(max(min(int(os.environ['MATRIX_CUDA_VERSION']), maxv), minv))")
export TORCH_CUDA_VERSION=$(python -c "import os; minv = {'1.12': 113, '1.13': 116, '2.0': 117, '2.1': 118}[os.environ['MATRIX_TORCH_VERSION']]; maxv = {'1.12': 116, '1.13': 117, '2.0': 118, '2.1': 121}[os.environ['MATRIX_TORCH_VERSION']]; print(max(min(int(os.environ['MATRIX_CUDA_VERSION']), maxv), minv))")
if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then
pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}
else

View File

@ -1,4 +1,4 @@
__version__ = "2.3.1"
__version__ = "2.3.1.post1"
from flash_attn.flash_attn_interface import (
flash_attn_func,

View File

@ -233,7 +233,8 @@ def get_wheel_url():
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
torch_cuda_version = parse(torch.version.cuda)
torch_version_raw = parse(torch.__version__)
if torch_version_raw.major == 2 and torch_version_raw.minor == 1:
# Workaround for nvcc 12.1 segfaults when compiling with Pytorch 2.1
if torch_version_raw.major == 2 and torch_version_raw.minor == 1 and torch_cuda_version.major == 12:
torch_cuda_version = parse("12.2")
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
platform_name = get_platform()

View File

@ -85,11 +85,11 @@ RUN pip install transformers==4.25.1 datasets==2.8.0 pytorch-lightning==1.8.6 tr
RUN pip install git+https://github.com/mlcommons/logging.git@2.1.0
# Install FlashAttention
RUN pip install flash-attn==2.3.1
RUN pip install flash-attn==2.3.1.post1
# Install CUDA extensions for fused dense, layer norm
RUN git clone https://github.com/HazyResearch/flash-attention \
&& cd flash-attention && git checkout v2.3.1 \
&& cd flash-attention && git checkout v2.3.1.post1 \
&& cd csrc/layer_norm && pip install . && cd ../../ \
&& cd csrc/fused_dense_lib && pip install . && cd ../../ \
&& cd .. && rm -rf flash-attention