[Benchmark] Add script to benchmark FlashAttention
This commit is contained in:
parent
32a953f486
commit
60499abcfd
@ -1,4 +1,6 @@
|
|||||||
from functools import partial
|
# Install the newest triton version with
|
||||||
|
# pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python"
|
||||||
|
import pickle
|
||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -6,65 +8,161 @@ import torch.nn.functional as F
|
|||||||
|
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
|
|
||||||
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined
|
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
|
||||||
from flash_attn.bert_padding import unpad_input, pad_input
|
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
|
||||||
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
|
||||||
|
from flash_attn import flash_attn_qkvpacked_func
|
||||||
|
|
||||||
|
try:
|
||||||
|
from triton.ops.flash_attention import attention as attention_triton
|
||||||
|
except ImportError:
|
||||||
|
attention_triton = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
import xformers.ops as xops
|
||||||
|
except ImportError:
|
||||||
|
xops = None
|
||||||
|
|
||||||
|
|
||||||
def attention_ref(qkv, attn_mask, dropout_p, upcast=False, causal=False):
|
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
|
||||||
|
assert mode in ["fwd", "bwd", "fwd_bwd"]
|
||||||
|
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
|
||||||
|
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
|
||||||
|
|
||||||
|
def efficiency(flop, time):
|
||||||
|
return (flop / time / 10**12) if not math.isnan(time) else 0.0
|
||||||
|
|
||||||
|
|
||||||
|
def attention_pytorch(qkv, dropout_p=0.0, causal=True):
|
||||||
"""
|
"""
|
||||||
Arguments:
|
Arguments:
|
||||||
qkv: (batch_size, seqlen, 3, nheads, head_dim)
|
qkv: (batch_size, seqlen, 3, nheads, head_dim)
|
||||||
attn_mask: (batch_size, seqlen)
|
|
||||||
dropout_p: float
|
dropout_p: float
|
||||||
Output:
|
Output:
|
||||||
output: (batch_size, seqlen, nheads, head_dim)
|
output: (batch_size, seqlen, nheads, head_dim)
|
||||||
attention: softmax after dropout
|
|
||||||
"""
|
"""
|
||||||
q, k, v = (qkv.float() if upcast else qkv).unbind(dim=2)
|
batch_size, seqlen, _, nheads, d = qkv.shape
|
||||||
seqlen = qkv.shape[1]
|
q, k, v = qkv.unbind(dim=2)
|
||||||
d = qkv.shape[-1]
|
q = rearrange(q, 'b t h d -> (b h) t d')
|
||||||
scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d))
|
k = rearrange(k, 'b s h d -> (b h) d s')
|
||||||
scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf'))
|
softmax_scale = 1.0 / math.sqrt(d)
|
||||||
|
# Preallocate attn_weights for `baddbmm`
|
||||||
|
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
|
||||||
|
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
|
||||||
|
'(b h) t s -> b h t s', h=nheads)
|
||||||
if causal:
|
if causal:
|
||||||
causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
|
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
||||||
scores.masked_fill_(causal_mask, float('-inf'))
|
# So we have to construct the mask in float
|
||||||
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
||||||
|
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
||||||
|
scores = scores + causal_mask.to(dtype=scores.dtype)
|
||||||
attention = torch.softmax(scores, dim=-1)
|
attention = torch.softmax(scores, dim=-1)
|
||||||
attention_drop = F.dropout(attention, dropout_p)
|
attention_drop = F.dropout(attention, dropout_p)
|
||||||
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
||||||
# return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
|
|
||||||
return output.to(dtype=qkv.dtype)
|
return output.to(dtype=qkv.dtype)
|
||||||
|
|
||||||
|
|
||||||
torch.manual_seed(0)
|
def time_fwd_bwd(func, *args, **kwargs):
|
||||||
|
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
|
||||||
|
return time_f[1].mean, time_b[1].mean
|
||||||
|
|
||||||
|
|
||||||
repeats = 30
|
repeats = 30
|
||||||
batch_size = 64
|
|
||||||
nheads = 16
|
|
||||||
seqlen = 1024
|
|
||||||
n = 1024
|
|
||||||
d = n // nheads
|
|
||||||
dropout_p = 0.1
|
|
||||||
causal = False
|
|
||||||
dtype = torch.float16
|
|
||||||
device = 'cuda'
|
device = 'cuda'
|
||||||
|
dtype = torch.float16
|
||||||
|
|
||||||
x = torch.randn(batch_size, seqlen, n, device='cuda', dtype=dtype, requires_grad=True)
|
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
|
||||||
Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype)
|
causal_vals = [False, True]
|
||||||
|
headdim_vals = [64, 128]
|
||||||
|
dim = 2048
|
||||||
|
dropout_p = 0.0
|
||||||
|
|
||||||
lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device='cuda')
|
methods = (["Flash2", "Pytorch"]
|
||||||
attention_mask_bool = repeat(torch.arange(seqlen, device='cuda'), 's -> b s', b=batch_size) < lengths
|
+ (["Triton"] if attention_triton is not None else [])
|
||||||
attention_mask = torch.zeros(batch_size, seqlen, device='cuda', dtype=dtype)
|
+ (["xformers"] if xops is not None else []))
|
||||||
attention_mask[~attention_mask_bool] = -10000.0
|
|
||||||
attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s')
|
|
||||||
|
|
||||||
x_unpad, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(x, attention_mask_bool)
|
time_f = {}
|
||||||
qkv_unpad = rearrange(Wqkv(x_unpad), 'nnz (t h d) -> nnz t h d', t=3,
|
time_b = {}
|
||||||
h=nheads).detach().requires_grad_()
|
time_f_b = {}
|
||||||
qkv = rearrange(Wqkv(x), 'b s (t h d) -> b s t h d', t=3, h=nheads).detach().requires_grad_()
|
speed_f = {}
|
||||||
|
speed_b = {}
|
||||||
fn = lambda qkv_unpad: flash_attn_varlen_qkvpacked_func(
|
speed_f_b = {}
|
||||||
qkv_unpad, cu_seqlens, max_seqlen_in_batch, dropout_p, causal=causal
|
for causal in causal_vals:
|
||||||
|
for headdim in headdim_vals:
|
||||||
|
for batch_size, seqlen in bs_seqlen_vals:
|
||||||
|
config = (causal, headdim, batch_size, seqlen)
|
||||||
|
nheads = dim // headdim
|
||||||
|
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
|
||||||
|
requires_grad=True)
|
||||||
|
f, b = time_fwd_bwd(
|
||||||
|
flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
|
||||||
)
|
)
|
||||||
benchmark_all(fn, qkv_unpad, repeats=repeats, desc='FlashAttention')
|
time_f[config, "Flash2"] = f
|
||||||
fn = lambda qkv: attention_ref(qkv, attention_mask_bool, dropout_p, causal=causal)
|
time_b[config, "Flash2"] = b
|
||||||
benchmark_all(fn, qkv, repeats=repeats, desc='PyTorch Standard Attention')
|
|
||||||
|
try:
|
||||||
|
qkv = qkv.detach().requires_grad_(True)
|
||||||
|
f, b = time_fwd_bwd(
|
||||||
|
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
|
||||||
|
)
|
||||||
|
except: # Skip if OOM
|
||||||
|
f, b = float('nan'), float('nan')
|
||||||
|
time_f[config, "Pytorch"] = f
|
||||||
|
time_b[config, "Pytorch"] = b
|
||||||
|
|
||||||
|
if attention_triton is not None:
|
||||||
|
q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
|
||||||
|
requires_grad=True) for _ in range(3)]
|
||||||
|
# Try both values of sequence_parallel and pick the faster one
|
||||||
|
try:
|
||||||
|
f, b = time_fwd_bwd(
|
||||||
|
attention_triton, q, k, v, causal, headdim**(-0.5),
|
||||||
|
False, repeats=repeats, verbose=False
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
f, b = float('nan'), float('inf')
|
||||||
|
try:
|
||||||
|
_, b0 = time_fwd_bwd(
|
||||||
|
attention_triton, q, k, v, causal, headdim**(-0.5),
|
||||||
|
True, repeats=repeats, verbose=False
|
||||||
|
)
|
||||||
|
except:
|
||||||
|
b0 = float('inf')
|
||||||
|
time_f[config, "Triton"] = f
|
||||||
|
time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan')
|
||||||
|
|
||||||
|
if xops is not None:
|
||||||
|
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
|
||||||
|
requires_grad=True) for _ in range(3)]
|
||||||
|
f, b = time_fwd_bwd(
|
||||||
|
xops.memory_efficient_attention, q, k, v,
|
||||||
|
attn_bias=xops.LowerTriangularMask() if causal else None,
|
||||||
|
op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
|
||||||
|
)
|
||||||
|
time_f[config, "xformers"] = f
|
||||||
|
time_b[config, "xformers"] = b
|
||||||
|
|
||||||
|
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
|
||||||
|
for method in methods:
|
||||||
|
time_f_b[config, method] = time_f[config, method] + time_b[config, method]
|
||||||
|
speed_f[config, method] = efficiency(
|
||||||
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
|
||||||
|
time_f[config, method]
|
||||||
|
)
|
||||||
|
speed_b[config, method] = efficiency(
|
||||||
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
|
||||||
|
time_b[config, method]
|
||||||
|
)
|
||||||
|
speed_f_b[config, method] = efficiency(
|
||||||
|
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
|
||||||
|
time_f_b[config, method]
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
|
||||||
|
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
|
||||||
|
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# with open('flash2_attn_time.plk', 'wb') as fp:
|
||||||
|
# pickle.dump((speed_f, speed_b, speed_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)
|
||||||
|
|||||||
@ -1,4 +1,4 @@
|
|||||||
# Copyright (c) 2022, Tri Dao.
|
# Copyright (c) 2023, Tri Dao.
|
||||||
""" Useful functions for writing test code. """
|
""" Useful functions for writing test code. """
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
@ -10,14 +10,12 @@ def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, amp=False,
|
|||||||
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
|
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
|
||||||
if verbose:
|
if verbose:
|
||||||
print(desc, '- Forward pass')
|
print(desc, '- Forward pass')
|
||||||
def fn_amp(*inputs, **kwinputs):
|
def amp_wrapper(*inputs, **kwinputs):
|
||||||
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
fn(*inputs, **kwinputs)
|
fn(*inputs, **kwinputs)
|
||||||
for _ in range(repeats): # warmup
|
|
||||||
fn_amp(*inputs, **kwinputs)
|
|
||||||
t = benchmark.Timer(
|
t = benchmark.Timer(
|
||||||
stmt='fn_amp(*inputs, **kwinputs)',
|
stmt='fn_amp(*inputs, **kwinputs)',
|
||||||
globals={'fn_amp': fn_amp, 'inputs': inputs, 'kwinputs': kwinputs},
|
globals={'fn_amp': amp_wrapper, 'inputs': inputs, 'kwinputs': kwinputs},
|
||||||
num_threads=torch.get_num_threads(),
|
num_threads=torch.get_num_threads(),
|
||||||
)
|
)
|
||||||
m = t.timeit(repeats)
|
m = t.timeit(repeats)
|
||||||
@ -40,11 +38,16 @@ def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True
|
|||||||
else:
|
else:
|
||||||
if grad.shape != y.shape:
|
if grad.shape != y.shape:
|
||||||
raise RuntimeError('Grad shape does not match output shape')
|
raise RuntimeError('Grad shape does not match output shape')
|
||||||
for _ in range(repeats): # warmup
|
def f(*inputs, y, grad):
|
||||||
|
# Set .grad to None to avoid extra operation of gradient accumulation
|
||||||
|
for x in inputs:
|
||||||
|
if isinstance(x, torch.Tensor):
|
||||||
|
x.grad = None
|
||||||
y.backward(grad, retain_graph=True)
|
y.backward(grad, retain_graph=True)
|
||||||
|
|
||||||
t = benchmark.Timer(
|
t = benchmark.Timer(
|
||||||
stmt='y.backward(grad, retain_graph=True)',
|
stmt='f(*inputs, y=y, grad=grad)',
|
||||||
globals={'y': y, 'grad': grad},
|
globals={'f': f, 'inputs': inputs, 'y': y, 'grad': grad},
|
||||||
num_threads=torch.get_num_threads(),
|
num_threads=torch.get_num_threads(),
|
||||||
)
|
)
|
||||||
m = t.timeit(repeats)
|
m = t.timeit(repeats)
|
||||||
@ -58,7 +61,6 @@ def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True
|
|||||||
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
||||||
if verbose:
|
if verbose:
|
||||||
print(desc, '- Forward + Backward pass')
|
print(desc, '- Forward + Backward pass')
|
||||||
def f(grad, *inputs, **kwinputs):
|
|
||||||
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
y = fn(*inputs, **kwinputs)
|
y = fn(*inputs, **kwinputs)
|
||||||
if type(y) is tuple:
|
if type(y) is tuple:
|
||||||
@ -68,9 +70,15 @@ def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True
|
|||||||
else:
|
else:
|
||||||
if grad.shape != y.shape:
|
if grad.shape != y.shape:
|
||||||
raise RuntimeError('Grad shape does not match output shape')
|
raise RuntimeError('Grad shape does not match output shape')
|
||||||
|
def f(grad, *inputs, **kwinputs):
|
||||||
|
for x in inputs:
|
||||||
|
if isinstance(x, torch.Tensor):
|
||||||
|
x.grad = None
|
||||||
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
|
y = fn(*inputs, **kwinputs)
|
||||||
|
if type(y) is tuple:
|
||||||
|
y = y[0]
|
||||||
y.backward(grad, retain_graph=True)
|
y.backward(grad, retain_graph=True)
|
||||||
for _ in range(repeats): # warmup
|
|
||||||
f(grad, *inputs, **kwinputs)
|
|
||||||
t = benchmark.Timer(
|
t = benchmark.Timer(
|
||||||
stmt='f(grad, *inputs, **kwinputs)',
|
stmt='f(grad, *inputs, **kwinputs)',
|
||||||
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
|
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
|
||||||
@ -82,6 +90,17 @@ def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True
|
|||||||
return t, m
|
return t, m
|
||||||
|
|
||||||
|
|
||||||
|
def benchmark_fwd_bwd(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
||||||
|
amp_dtype=torch.float16, **kwinputs):
|
||||||
|
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
||||||
|
return (
|
||||||
|
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose,
|
||||||
|
amp=amp, amp_dtype=amp_dtype, **kwinputs),
|
||||||
|
benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
|
||||||
|
amp=amp, amp_dtype=amp_dtype, **kwinputs),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
|
||||||
amp_dtype=torch.float16, **kwinputs):
|
amp_dtype=torch.float16, **kwinputs):
|
||||||
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
|
||||||
@ -102,16 +121,15 @@ def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False
|
|||||||
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
g = torch.randn_like(fn(*inputs, **kwinputs))
|
g = torch.randn_like(fn(*inputs, **kwinputs))
|
||||||
for _ in range(30): # Warm up
|
for _ in range(30): # Warm up
|
||||||
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
||||||
if backward:
|
if backward:
|
||||||
for x in inputs:
|
for x in inputs:
|
||||||
if isinstance(x, torch.Tensor):
|
if isinstance(x, torch.Tensor):
|
||||||
x.grad = None
|
x.grad = None
|
||||||
# fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g)
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
out = fn(*inputs, **kwinputs)
|
out = fn(*inputs, **kwinputs)
|
||||||
# Backward should be done outside autocast
|
# Backward should be done outside autocast
|
||||||
if backward:
|
if backward:
|
||||||
out.backward(g)
|
out.backward(g, retain_graph=True)
|
||||||
activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA]
|
activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA]
|
||||||
with torch.profiler.profile(
|
with torch.profiler.profile(
|
||||||
activities=activities,
|
activities=activities,
|
||||||
@ -119,13 +137,13 @@ def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False
|
|||||||
# profile_memory=True,
|
# profile_memory=True,
|
||||||
with_stack=True,
|
with_stack=True,
|
||||||
) as prof:
|
) as prof:
|
||||||
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
|
||||||
if backward:
|
if backward:
|
||||||
for x in inputs:
|
for x in inputs:
|
||||||
if isinstance(x, torch.Tensor):
|
if isinstance(x, torch.Tensor):
|
||||||
x.grad = None
|
x.grad = None
|
||||||
|
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
|
||||||
out = fn(*inputs, **kwinputs)
|
out = fn(*inputs, **kwinputs)
|
||||||
if backward: out.backward(g)
|
if backward: out.backward(g, retain_graph=True)
|
||||||
if verbose:
|
if verbose:
|
||||||
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
|
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
|
||||||
print(prof.key_averages().table(row_limit=50))
|
print(prof.key_averages().table(row_limit=50))
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user