[Gen] Fix FT kernel when using CG

This commit is contained in:
Tri Dao 2023-04-14 16:50:01 -07:00
parent dceb2687c5
commit 605655bc66
3 changed files with 107 additions and 12 deletions

View File

@ -495,7 +495,8 @@ class MHA(nn.Module):
*inference_params.key_value_memory_dict[self.layer_idx],
inference_params.lengths_per_sample, inference_params.sequence_len_offset,
self.rotary_emb_dim,
not self.rotary_emb.interleaved # neox_rotary_style
# neox_rotary_style
(not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
)
context = rearrange(context, 'b h d -> b 1 h d')
else:
@ -609,7 +610,8 @@ class ParallelMHA(nn.Module):
*inference_params.key_value_memory_dict[self.layer_idx],
inference_params.lengths_per_sample, inference_params.sequence_len_offset,
self.rotary_emb_dim,
not self.rotary_emb.interleaved # neox_rotary_style
# neox_rotary_style
(not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
)
context = rearrange(context, 'b h d -> b 1 h d')
if seqlen is None:

View File

@ -190,9 +190,9 @@ def seqlen_to_seqlen_type(seqlen: int) -> int:
return 0 if seqlen < 32 else (1 if seqlen < 2048 else 2)
def seqlen_type_to_seqlen(seqlen_type: int) -> int:
def seqlen_type_to_max_seqlen(seqlen_type: int) -> int:
assert seqlen_type in [0, 1, 2]
return 1 if seqlen_type == 0 else (32 if seqlen_type == 1 else 2048)
return 32 if seqlen_type == 0 else (2048 if seqlen_type == 1 else 2**32)
@dataclass
@ -239,9 +239,9 @@ def update_graph_cache(model, cache, batch_size, seqlen_og, max_seqlen, tensor_p
cache.mempool = torch.cuda.graphs.graph_pool_handle()
for s_type in range(seqlen_to_seqlen_type(seqlen_og), seqlen_to_seqlen_type(max_seqlen) + 1):
if s_type not in cache.callables:
seqlen = min(max(seqlen_og, seqlen_type_to_seqlen(s_type)), max_seqlen)
max_seqlen_ = min(max(seqlen_og, seqlen_type_to_max_seqlen(s_type)), max_seqlen)
cache.callables[s_type] = capture_graph(
model, cache.inference_params, batch_size, seqlen_og, seqlen, mempool=cache.mempool,
model, cache.inference_params, batch_size, max_seqlen_, mempool=cache.mempool,
n_warmups=n_warmups
)
@ -249,17 +249,19 @@ def update_graph_cache(model, cache, batch_size, seqlen_og, max_seqlen, tensor_p
return cache.callables[seqlen_to_seqlen_type(seqlen)](input_ids, position_ids, seqlen)
cache.run = dispatch
cache.inference_params.sequence_length_offset = 0 # Reset so it's not confusing
cache.inference_params.sequence_len_offset = 0 # Reset so it's not confusing
return cache
def capture_graph(model, inference_params, batch_size, seqlen_og, max_seqlen, mempool=None,
n_warmups=2):
assert max_seqlen >= seqlen_og
def capture_graph(model, inference_params, batch_size, max_seqlen, mempool=None, n_warmups=2):
device = next(iter(model.parameters())).device
input_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
position_ids = torch.full((batch_size, 1), 0, dtype=torch.long, device=device)
inference_params.lengths_per_sample[:] = seqlen_og
sequence_len_offset_og = inference_params.sequence_len_offset
# TD [2023-04-14]: important for correctness of the FT's attention kernel, as seqlen_cpu is
# used to determine the size of smem. Hence seqlen_cpu must be >= lengths_per_sample.
inference_params.sequence_len_offset = max_seqlen - 1
inference_params.lengths_per_sample[:] = max_seqlen - 1
# Warmup before capture
s = torch.cuda.Stream()
@ -289,4 +291,5 @@ def capture_graph(model, inference_params, batch_size, seqlen_og, max_seqlen, me
graph.replay()
return logits
inference_params.sequence_len_offset = sequence_len_offset_og
return run

View File

@ -1,4 +1,4 @@
import re
import time
import torch
import pytest
@ -9,6 +9,7 @@ from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gptj import remap_state_dict_hf_gptj, gptj_config_to_gpt2_config
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.generation import update_graph_cache
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
@ -79,3 +80,92 @@ def test_gptj_optimized(model_name):
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-j-6B"])
def test_gptj_generation(model_name):
"""Check that our implementation of GPT-J (with all optimizations enabled) matches the
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
forward pass in fp16, when compared to the HF forward pass in fp32.
"""
dtype = torch.float16
device = 'cuda'
config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
config.use_flash_attn = False # FlashAttention doesn't support hdim 256 yet
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
# Only prenorm supports residual_in_fp32
config.residual_in_fp32 = True
tokenizer = AutoTokenizer.from_pretrained(model_name)
eos_token_id = tokenizer.eos_token_id
torch.manual_seed(0)
batch_size = 1
seqlen = 100
max_length = 150
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
device=device)
model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
device_map={"": device})
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
del model_hf
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
model_ref.eval()
with torch.no_grad():
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
del model_ref
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
print('Without CUDA graph')
torch.cuda.synchronize()
start = time.time()
out = model.generate(input_ids=input_ids, max_length=max_length,
eos_token_id=eos_token_id, fused_ft_kernel=True,
# eos_token_id=eos_token_id, fused_ft_kernel=False,
return_dict_in_generate=True, output_scores=True, timing=True,
teacher_outputs=out_hf.sequences)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
print('With CUDA graph')
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(input_ids=input_ids, max_length=max_length,
fused_ft_kernel=True, cg=True,
return_dict_in_generate=True, output_scores=True, timing=True,
teacher_outputs=out_hf.sequences)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
with torch.no_grad():
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1]
logits_hf = torch.stack(out_hf.scores, dim=1)
logits = torch.stack(out.scores, dim=1)
logits_cg = torch.stack(out_cg.scores, dim=1)
del model
hf_error = (logits_hf - logits_ref).abs().max().item()
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
print(f'HF fp16 logits max diff: {hf_error}')
print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
assert torch.equal(logits_cg, logits)