diff --git a/flash_attn/bert_padding.py b/flash_attn/bert_padding.py index 34c6b26..74c2ea5 100644 --- a/flash_attn/bert_padding.py +++ b/flash_attn/bert_padding.py @@ -1,5 +1,7 @@ # Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py +import numpy as np + import torch import torch.nn.functional as F @@ -11,21 +13,26 @@ class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) - ctx.first_axis_dim = input.shape[0] - assert input.ndim == 2 + assert input.ndim >= 2 + ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] + second_dim = np.prod(other_shape) # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] - return torch.gather(input, 0, repeat(indices, 'z -> z d', d=input.shape[1])) + return torch.gather(rearrange(input, 'b ... -> b (...)'), 0, + repeat(indices, 'z -> z d', d=second_dim)).reshape(-1, *other_shape) @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors - grad_input = torch.zeros([ctx.first_axis_dim, *grad_output.shape[1:]], - device=grad_output.device, dtype=grad_output.dtype) + assert grad_output.ndim >= 2 + other_shape = grad_output.shape[1:] + grad_output = rearrange(grad_output, 'b ... -> b (...)') + grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]], + device=grad_output.device, dtype=grad_output.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output) - return grad_input, None + return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply @@ -37,8 +44,8 @@ class IndexPutFirstAxis(torch.autograd.Function): def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 - assert values.ndim == 2 - output = torch.zeros(first_axis_dim, values.shape[1], device=values.device, + assert values.ndim >= 2 + output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values @@ -57,13 +64,45 @@ class IndexPutFirstAxis(torch.autograd.Function): index_put_first_axis = IndexPutFirstAxis.apply +class IndexFirstAxisResidual(torch.autograd.Function): + + @staticmethod + def forward(ctx, input, indices): + ctx.save_for_backward(indices) + assert input.ndim >= 2 + ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] + second_dim = np.prod(other_shape) + # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. + output = input[indices] + # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last + # memory format to channel_first. In other words, input might not be contiguous. + # If we don't detach, Pytorch complains about output being a view and is being modified inplace + return output, input.detach() + + @staticmethod + def backward(ctx, grad_output, grad_residual): + indices, = ctx.saved_tensors + assert grad_output.ndim >= 2 + other_shape = grad_output.shape[1:] + assert grad_residual.shape[1:] == other_shape + grad_input = grad_residual + # grad_input[indices] += grad_output + indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1))) + indices = indices.expand_as(grad_output) + grad_input.scatter_add_(0, indices, grad_output) + return grad_input.reshape(ctx.first_axis_dim, *other_shape), None + + +index_first_axis_residual = IndexFirstAxisResidual.apply + + def unpad_input(hidden_states, attention_mask): """ Arguments: - hidden_states: (batch, seqlen, dim) + hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Return: - hidden_states: (total_nnz, dim), where total_nnz = number of tokens in selected in attention_mask. + hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ @@ -76,20 +115,20 @@ def unpad_input(hidden_states, attention_mask): # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. - return (index_first_axis(rearrange(hidden_states, 'b s d -> (b s) d'), indices), indices, + return (index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices), indices, cu_seqlens, max_seqlen_in_batch) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: - hidden_states: (total_nnz, dim), where total_nnz = number of tokens in selected in attention_mask. + hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) Return: - hidden_states: (batch, seqlen, dim) + hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) - return rearrange(output, '(b s) d -> b s d', b=batch) + return rearrange(output, '(b s) ... -> b s ...', b=batch)