Implement Tensor Parallel for GPT2Embeddings

This commit is contained in:
Tri Dao 2022-12-25 14:29:53 -08:00
parent a8cfe51551
commit 78225c5366
2 changed files with 166 additions and 7 deletions

View File

@ -3,18 +3,26 @@
import torch
import torch.nn as nn
from einops import rearrange
from flash_attn.utils.distributed import reduce_scatter
class GPT2Embeddings(nn.Module):
def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None):
def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None,
device=None, dtype=None):
"""
If max_position_embeddings <= 0, there's no position embeddings
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx)
self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx,
**factory_kwargs)
self.max_position_embeddings = max_position_embeddings
if self.max_position_embeddings > 0:
self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim)
self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim,
**factory_kwargs)
def forward(self, input_ids, position_ids=None):
"""
@ -34,19 +42,23 @@ class GPT2Embeddings(nn.Module):
class BertEmbeddings(nn.Module):
def __init__(self, embed_dim, vocab_size, max_position_embeddings, type_vocab_size,
padding_idx=None):
padding_idx=None, device=None, dtype=None):
"""
If max_position_embeddings <= 0, there's no position embeddings
If type_vocab_size <= 0, there's no token type embeddings
"""
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx)
self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx,
**factory_kwargs)
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
if self.max_position_embeddings > 0:
self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim)
self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim,
**factory_kwargs)
if self.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim)
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim,
**factory_kwargs)
def forward(self, input_ids, position_ids=None, token_type_ids=None):
"""
@ -67,3 +79,66 @@ class BertEmbeddings(nn.Module):
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = embeddings + token_type_embeddings
return embeddings
class ParallelGPT2Embeddings(nn.Module):
def __init__(self, embed_dim, vocab_size, max_position_embeddings, process_group,
padding_idx=None, device=None, dtype=None):
"""
If max_position_embeddings <= 0, there's no position embeddings
"""
world_size = torch.distributed.get_world_size(process_group)
if vocab_size % world_size != 0:
raise ValueError(f'vocab_size ({vocab_size}) must be divisible by '
f'world_size ({world_size})')
if embed_dim % world_size != 0:
raise ValueError(f'embed_dim ({embed_dim}) must be divisible by '
f'world_size ({world_size})')
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.process_group = process_group
self.word_embeddings = nn.Embedding(vocab_size // world_size, embed_dim,
padding_idx=padding_idx, **factory_kwargs)
self.max_position_embeddings = max_position_embeddings
if self.max_position_embeddings > 0:
self.position_embeddings = nn.Embedding(
max_position_embeddings, embed_dim // world_size, **factory_kwargs
)
def forward(self, input_ids, position_ids=None, combine_batch_seqlen_dim=False):
"""
input_ids: (batch, seqlen)
position_ids: (batch, seqlen)
"""
batch_size, seqlen = input_ids.shape
world_size = torch.distributed.get_world_size(self.process_group)
if world_size <= 1:
embeddings = self.word_embeddings(input_ids)
if self.max_position_embeddings > 0:
if position_ids is None:
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
if combine_batch_seqlen_dim:
embeddings = rearrange(embeddings, 'b s d -> (b s) d')
return embeddings
else:
rank = torch.distributed.get_rank(self.process_group)
vocab_size = self.word_embeddings.num_embeddings
vocab_start_index, vocab_end_index = rank * vocab_size, (rank + 1) * vocab_size
# Create a mask of valid vocab ids (1 means it needs to be masked).
input_ids_mask = (input_ids < vocab_start_index) | (input_ids >= vocab_end_index)
input_ids = input_ids - vocab_start_index
input_ids[input_ids_mask] = 0
embeddings = self.word_embeddings(input_ids)
embeddings[input_ids_mask] = 0.0
if self.max_position_embeddings > 0:
if position_ids is None:
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
position_embeddings = self.position_embeddings(position_ids)
partition_dim = self.position_embeddings.embedding_dim
embeddings[..., rank * partition_dim:(rank + 1) * partition_dim] += position_embeddings
if combine_batch_seqlen_dim:
embeddings = rearrange(embeddings, 'b s d -> (b s) d')
return reduce_scatter(embeddings, self.process_group)

View File

@ -0,0 +1,84 @@
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest
from einops import rearrange
from apex.transformer import parallel_state
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('has_pos_emb', [True, False])
# @pytest.mark.parametrize('has_pos_emb', [True])
@pytest.mark.parametrize('dim', [1024])
def test_embedding_parallel(dim, world_size, has_pos_emb, dtype):
vocab_size = 50264
seqlen = 2048
assert vocab_size % world_size == 0
assert dim % world_size == 0
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 1024
assert (batch_size * seqlen) % world_size == 0
input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device)
input_ids = input_ids_pt.detach().clone()
model_pt = GPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
device=device, dtype=dtype)
model = ParallelGPT2Embeddings(dim, vocab_size, seqlen if has_pos_emb else 0,
parallel_state.get_tensor_model_parallel_group(),
device=device, dtype=dtype)
partition_vocab_size = vocab_size // world_size
partition_dim = dim // world_size
with torch.no_grad():
model.word_embeddings.weight.copy_(
model_pt.word_embeddings.weight[rank * partition_vocab_size:(rank + 1) * partition_vocab_size]
)
if has_pos_emb:
model.position_embeddings.weight.copy_(
model_pt.position_embeddings.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
)
out = model(input_ids, combine_batch_seqlen_dim=True)
out_pt = rearrange(model_pt(input_ids), 'b s d -> (b s) d')
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
g = torch.randn_like(out_pt)
out_pt.backward(g)
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
parallel_state.destroy_model_parallel()
assert torch.allclose(
model.word_embeddings.weight.grad,
model_pt.word_embeddings.weight.grad[rank * partition_vocab_size:(rank + 1) * partition_vocab_size],
rtol=rtol, atol=atol
)
if has_pos_emb:
assert torch.allclose(
model.position_embeddings.weight.grad,
model_pt.position_embeddings.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
rtol=rtol, atol=atol
)