[LayerNorm] Implement residual + LayerNorm/RMSNorm in Triton

This commit is contained in:
Tri Dao 2023-11-13 01:56:46 -08:00
parent 3566596ad8
commit 79bd1a2d5d
3 changed files with 506 additions and 1 deletions

View File

@ -0,0 +1,395 @@
# Copyright (c) 2023, Tri Dao.
# Implement residual + layer_norm / rms_norm.
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
import math
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
dtype = x.dtype
if upcast:
weight = weight.float()
bias = bias.float() if bias is not None else None
if upcast:
x = x.float()
residual = residual.float() if residual is not None else residual
if residual is not None:
x = (x + residual).to(x.dtype)
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(dtype)
return out if residual is None else (out, x)
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
dtype = x.dtype
if upcast:
weight = weight.float()
bias = bias.float() if bias is not None else None
if upcast:
x = x.float()
residual = residual.float() if residual is not None else residual
if residual is not None:
x = (x + residual).to(x.dtype)
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
out = out.to(dtype)
return out if residual is None else (out, x)
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32),
],
key=["N", "HAS_RESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
@triton.jit
def _layer_norm_fwd_1pass_kernel(
X, # pointer to the input
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
RESIDUAL, # pointer to the residual
RESIDUAL_OUT, # pointer to the residual
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_res_row,
stride_res_out_row,
N, # number of columns in X
eps, # epsilon to avoid division by zero
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_RESIDUAL: tl.constexpr,
HAS_BIAS: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
X += row * stride_x_row
Y += row * stride_y_row
if HAS_RESIDUAL:
RESIDUAL += row * stride_res_row
RESIDUAL_OUT += row * stride_res_out_row
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
if HAS_RESIDUAL:
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.).to(tl.float32)
x += residual
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w + b if HAS_BIAS else x_hat * w
# Write output
tl.store(Y + cols, y, mask=mask)
def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
M, N = x.shape
assert x.stride(-1) == 1
if residual is not None:
assert residual.stride(-1) == 1
assert residual.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
y = torch.empty_like(x)
assert y.stride(-1) == 1
if residual is not None:
residual_out = torch.empty_like(residual)
assert residual_out.stride(-1) == 1
else:
residual_out = None
mean = torch.empty((M, ), dtype=torch.float32, device='cuda') if not is_rms_norm else None
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[(M,)](x, y, weight, bias, residual, residual_out,
mean, rstd,
x.stride(0), y.stride(0),
residual.stride(0) if residual is not None else 0,
residual_out.stride(0) if residual is not None else 0,
N, eps,
is_rms_norm,
BLOCK_N,
residual is not None,
bias is not None,
)
return y, mean, rstd, residual_out
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32),
],
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
)
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
@triton.jit
def _layer_norm_bwd_kernel(
X, # pointer to the input
W, # pointer to the weights
B, # pointer to the biases
Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
DW, # pointer to the partial sum of weights gradient
DB, # pointer to the partial sum of biases gradient
DRESIDUAL,
DRESIDUAL_IN,
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_dy_row,
stride_dx_row,
stride_dres_row,
stride_dres_in_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
rows_per_program,
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_DRESIDUAL: tl.constexpr,
STORE_DRESIDUAL: tl.constexpr,
HAS_BIAS: tl.constexpr,
RECOMPUTE_OUTPUT: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row_block_id = tl.program_id(0)
row_start = row_block_id * rows_per_program
cols = tl.arange(0, BLOCK_N)
mask = cols < N
X += row_start * stride_x_row
if HAS_DRESIDUAL:
DRESIDUAL += row_start * stride_dres_row
if STORE_DRESIDUAL:
DRESIDUAL_IN += row_start * stride_dres_in_row
DY += row_start * stride_dy_row
DX += row_start * stride_dx_row
if RECOMPUTE_OUTPUT:
Y += row_start * stride_y_row
w = tl.load(W + cols, mask=mask).to(tl.float32)
if RECOMPUTE_OUTPUT and HAS_BIAS:
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
row_end = min((row_block_id + 1) * rows_per_program, M)
for row in range(row_start, row_end):
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
if not IS_RMS_NORM:
mean = tl.load(Mean + row)
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.)
if RECOMPUTE_OUTPUT:
y = xhat * w + b if HAS_BIAS else xhat * w
tl.store(Y + cols, y, mask=mask)
wdy = w * dy
dw += dy * xhat
if HAS_BIAS:
db += dy
if not IS_RMS_NORM:
c1 = tl.sum(xhat * wdy, axis=0) / N
c2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * c1 + c2)) * rstd
else:
c1 = tl.sum(xhat * wdy, axis=0) / N
dx = (wdy - xhat * c1) * rstd
if HAS_DRESIDUAL:
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
dx += dres
# Write dx
if STORE_DRESIDUAL:
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
tl.store(DX + cols, dx, mask=mask)
X += stride_x_row
if HAS_DRESIDUAL:
DRESIDUAL += stride_dres_row
if STORE_DRESIDUAL:
DRESIDUAL_IN += stride_dres_in_row
if RECOMPUTE_OUTPUT:
Y += stride_y_row
DY += stride_dy_row
DX += stride_dx_row
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
if HAS_BIAS:
tl.store(DB + row_block_id * N + cols, db, mask=mask)
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms_norm=False, x_dtype=None,
recompute_output=False):
M, N = x.shape
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
assert dy.shape == (M, N)
if dresidual is not None:
assert dresidual.stride(-1) == 1
assert dresidual.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
dx = torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device)
dresidual_in = torch.empty_like(dresidual) if dresidual is not None and dx.dtype != dresidual.dtype else None
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
_db = torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) if bias is not None else None
rows_per_program = math.ceil(M / sm_count)
grid = (sm_count,)
with torch.cuda.device(x.device.index):
_layer_norm_bwd_kernel[grid](x, weight, bias, y,
dy, dx, _dw, _db, dresidual, dresidual_in,
mean, rstd,
x.stride(0),
0 if not recompute_output else y.stride(0),
dy.stride(0), dx.stride(0),
dresidual.stride(0) if dresidual is not None else 0,
dresidual_in.stride(0) if dresidual_in is not None else 0,
M, N, eps,
rows_per_program,
is_rms_norm,
BLOCK_N,
dresidual is not None,
dresidual_in is not None,
bias is not None)
dw = _dw.sum(0).to(weight.dtype)
db = _db.sum(0).to(bias.dtype) if bias is not None else None
# Don't need to compute dresidual_in separately in this case
if dresidual is not None and dx.dtype == dresidual.dtype:
dresidual_in = dx
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
class LayerNormFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
x_shape_og = x.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
if x.stride(-1) != 1:
x = x.contiguous()
if residual is not None:
assert residual.shape == x_shape_og
residual = residual.reshape(-1, residual.shape[-1])
if residual.stride(-1) != 1:
residual = residual.contiguous()
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
y, mean, rstd, *rest = _layer_norm_fwd(x, weight, bias, eps, residual, is_rms_norm)
if residual is not None:
residual_out = rest[0]
ctx.save_for_backward(x if residual is None else residual_out, weight, bias, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.x_dtype = x.dtype
y = y.reshape(x_shape_og)
return y if residual is None else (y, residual_out.reshape(x_shape_og))
@staticmethod
def backward(ctx, dy, *args):
x, weight, bias, mean, rstd = ctx.saved_tensors
dy = dy.reshape(-1, dy.shape[-1])
if dy.stride(-1) != 1:
dy = dy.contiguous()
assert dy.shape == x.shape
if ctx.has_residual:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
if dresidual.stride(-1) != 1:
dresidual = dresidual.contiguous()
assert dresidual.shape == x.shape
else:
dresidual = None
dx, dw, db, dresidual_in = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, dresidual,
ctx.is_rms_norm, x_dtype=ctx.x_dtype)
return dx.reshape(ctx.x_shape_og), dw, db, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, None, None
def layer_norm_fn(x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
return LayerNormFn.apply(x, weight, bias, residual, eps, is_rms_norm)
def rms_norm_fn(x, weight, bias, residual=None, eps=1e-6):
return LayerNormFn.apply(x, weight, bias, residual, eps, True)
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
def forward(self, x, residual=None):
return layer_norm_fn(x, self.weight, self.bias, residual=residual, eps=self.eps, is_rms_norm=True)

View File

@ -213,7 +213,10 @@ def pytorch_profiler(
"""Wrap benchmark functions in Pytorch profiler to see CUDA information."""
if backward:
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
g = torch.randn_like(fn(*inputs, **kwinputs))
out = fn(*inputs, **kwinputs)
if type(out) is tuple:
out = out[0]
g = torch.randn_like(out)
for _ in range(30): # Warm up
if backward:
for x in inputs:
@ -221,6 +224,8 @@ def pytorch_profiler(
x.grad = None
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
out = fn(*inputs, **kwinputs)
if type(out) is tuple:
out = out[0]
# Backward should be done outside autocast
if backward:
out.backward(g, retain_graph=True)
@ -239,6 +244,8 @@ def pytorch_profiler(
x.grad = None
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
out = fn(*inputs, **kwinputs)
if type(out) is tuple:
out = out[0]
if backward:
out.backward(g, retain_graph=True)
if verbose:

View File

@ -0,0 +1,103 @@
import math
from functools import partial
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_norm_ref
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_residual", [True, False])
# @pytest.mark.parametrize("has_residual", [True])
@pytest.mark.parametrize(
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
)
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
@pytest.mark.parametrize(
"input_dtype,residual_dtype",
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
)
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192])
# @pytest.mark.parametrize("hidden_size", [256])
def test_layer_norm(
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm
):
device = "cuda"
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-2
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
atol = 5e-3
else:
atol = 1e-4
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 512
# batch_size = 1
# seqlen = 1
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
allclose = (
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
<= 2 * (x_pt - x_ref).abs().max() + atol
)
x0 = torch.randn(
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
)
x0_pt = x0.detach().clone().requires_grad_()
x0_ref = x0.detach().clone().requires_grad_()
if has_residual:
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
res_pt = res.detach().clone().requires_grad_()
res_ref = res.detach().clone().requires_grad_()
else:
res, res_pt, res_ref = None, None, None
weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
if not is_rms_norm:
bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
else:
bias = None
weight_pt = weight.detach().clone().requires_grad_()
weight_ref = weight.detach().clone().requires_grad_()
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
out, *rest = layer_norm_fn(x0, weight, bias, residual=res, eps=1e-6, is_rms_norm=is_rms_norm)
out_pt, *rest_pt = layer_norm_ref_fn(x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6)
out_ref, *rest_ref = layer_norm_ref_fn(
x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, upcast=True
)
if has_residual:
residual = rest[0]
residual_pt = rest_pt[0]
residual_ref = rest_ref[0]
residual_ref = x0_ref + res_ref
assert out.dtype == input_dtype
if has_residual:
assert residual.dtype == residual_dtype
assert allclose(residual, residual_pt, residual_ref)
assert allclose(out, out_pt, out_ref)
g = torch.randn_like(out) / batch_size
if not has_residual:
out.backward(g)
out_pt.backward(g)
out_ref.backward(g)
else:
(out * F.sigmoid(residual)).backward(g)
(out_pt * F.sigmoid(residual_pt)).backward(g)
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
if has_residual:
assert allclose(res.grad, res_pt.grad, res_ref.grad)
assert allclose(weight.grad, weight_pt.grad, weight_ref.grad)
if bias is not None:
assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)