[LayerNorm] Implement residual + LayerNorm/RMSNorm in Triton
This commit is contained in:
parent
3566596ad8
commit
79bd1a2d5d
395
flash_attn/ops/triton/layernorm.py
Normal file
395
flash_attn/ops/triton/layernorm.py
Normal file
@ -0,0 +1,395 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
# Implement residual + layer_norm / rms_norm.
|
||||
|
||||
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
||||
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
||||
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
||||
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
|
||||
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
|
||||
dtype = x.dtype
|
||||
if upcast:
|
||||
weight = weight.float()
|
||||
bias = bias.float() if bias is not None else None
|
||||
if upcast:
|
||||
x = x.float()
|
||||
residual = residual.float() if residual is not None else residual
|
||||
if residual is not None:
|
||||
x = (x + residual).to(x.dtype)
|
||||
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(dtype)
|
||||
return out if residual is None else (out, x)
|
||||
|
||||
|
||||
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, upcast=False):
|
||||
dtype = x.dtype
|
||||
if upcast:
|
||||
weight = weight.float()
|
||||
bias = bias.float() if bias is not None else None
|
||||
if upcast:
|
||||
x = x.float()
|
||||
residual = residual.float() if residual is not None else residual
|
||||
if residual is not None:
|
||||
x = (x + residual).to(x.dtype)
|
||||
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
||||
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
|
||||
out = out.to(dtype)
|
||||
return out if residual is None else (out, x)
|
||||
|
||||
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({}, num_warps=1),
|
||||
triton.Config({}, num_warps=2),
|
||||
triton.Config({}, num_warps=4),
|
||||
triton.Config({}, num_warps=8),
|
||||
triton.Config({}, num_warps=16),
|
||||
triton.Config({}, num_warps=32),
|
||||
],
|
||||
key=["N", "HAS_RESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
|
||||
)
|
||||
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
||||
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
||||
@triton.jit
|
||||
def _layer_norm_fwd_1pass_kernel(
|
||||
X, # pointer to the input
|
||||
Y, # pointer to the output
|
||||
W, # pointer to the weights
|
||||
B, # pointer to the biases
|
||||
RESIDUAL, # pointer to the residual
|
||||
RESIDUAL_OUT, # pointer to the residual
|
||||
Mean, # pointer to the mean
|
||||
Rstd, # pointer to the 1/std
|
||||
stride_x_row, # how much to increase the pointer when moving by 1 row
|
||||
stride_y_row,
|
||||
stride_res_row,
|
||||
stride_res_out_row,
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
IS_RMS_NORM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
HAS_RESIDUAL: tl.constexpr,
|
||||
HAS_BIAS: tl.constexpr,
|
||||
):
|
||||
# Map the program id to the row of X and Y it should compute.
|
||||
row = tl.program_id(0)
|
||||
X += row * stride_x_row
|
||||
Y += row * stride_y_row
|
||||
if HAS_RESIDUAL:
|
||||
RESIDUAL += row * stride_res_row
|
||||
RESIDUAL_OUT += row * stride_res_out_row
|
||||
# Compute mean and variance
|
||||
cols = tl.arange(0, BLOCK_N)
|
||||
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
|
||||
if HAS_RESIDUAL:
|
||||
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.).to(tl.float32)
|
||||
x += residual
|
||||
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
||||
if not IS_RMS_NORM:
|
||||
mean = tl.sum(x, axis=0) / N
|
||||
tl.store(Mean + row, mean)
|
||||
xbar = tl.where(cols < N, x - mean, 0.)
|
||||
var = tl.sum(xbar * xbar, axis=0) / N
|
||||
else:
|
||||
xbar = tl.where(cols < N, x, 0.)
|
||||
var = tl.sum(xbar * xbar, axis=0) / N
|
||||
rstd = 1 / tl.sqrt(var + eps)
|
||||
tl.store(Rstd + row, rstd)
|
||||
# Normalize and apply linear transformation
|
||||
mask = cols < N
|
||||
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
||||
if HAS_BIAS:
|
||||
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
||||
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
||||
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
||||
# Write output
|
||||
tl.store(Y + cols, y, mask=mask)
|
||||
|
||||
|
||||
def _layer_norm_fwd(x, weight, bias, eps, residual=None, is_rms_norm=False):
|
||||
M, N = x.shape
|
||||
assert x.stride(-1) == 1
|
||||
if residual is not None:
|
||||
assert residual.stride(-1) == 1
|
||||
assert residual.shape == (M, N)
|
||||
assert weight.shape == (N,)
|
||||
assert weight.stride(-1) == 1
|
||||
if bias is not None:
|
||||
assert bias.stride(-1) == 1
|
||||
assert bias.shape == (N,)
|
||||
# allocate output
|
||||
y = torch.empty_like(x)
|
||||
assert y.stride(-1) == 1
|
||||
if residual is not None:
|
||||
residual_out = torch.empty_like(residual)
|
||||
assert residual_out.stride(-1) == 1
|
||||
else:
|
||||
residual_out = None
|
||||
mean = torch.empty((M, ), dtype=torch.float32, device='cuda') if not is_rms_norm else None
|
||||
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
if N > BLOCK_N:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
# heuristics for number of warps
|
||||
with torch.cuda.device(x.device.index):
|
||||
_layer_norm_fwd_1pass_kernel[(M,)](x, y, weight, bias, residual, residual_out,
|
||||
mean, rstd,
|
||||
x.stride(0), y.stride(0),
|
||||
residual.stride(0) if residual is not None else 0,
|
||||
residual_out.stride(0) if residual is not None else 0,
|
||||
N, eps,
|
||||
is_rms_norm,
|
||||
BLOCK_N,
|
||||
residual is not None,
|
||||
bias is not None,
|
||||
)
|
||||
return y, mean, rstd, residual_out
|
||||
|
||||
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({}, num_warps=1),
|
||||
triton.Config({}, num_warps=2),
|
||||
triton.Config({}, num_warps=4),
|
||||
triton.Config({}, num_warps=8),
|
||||
triton.Config({}, num_warps=16),
|
||||
triton.Config({}, num_warps=32),
|
||||
],
|
||||
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
|
||||
)
|
||||
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
||||
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
||||
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
||||
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
||||
@triton.jit
|
||||
def _layer_norm_bwd_kernel(
|
||||
X, # pointer to the input
|
||||
W, # pointer to the weights
|
||||
B, # pointer to the biases
|
||||
Y, # pointer to the output to be recomputed
|
||||
DY, # pointer to the output gradient
|
||||
DX, # pointer to the input gradient
|
||||
DW, # pointer to the partial sum of weights gradient
|
||||
DB, # pointer to the partial sum of biases gradient
|
||||
DRESIDUAL,
|
||||
DRESIDUAL_IN,
|
||||
Mean, # pointer to the mean
|
||||
Rstd, # pointer to the 1/std
|
||||
stride_x_row, # how much to increase the pointer when moving by 1 row
|
||||
stride_y_row,
|
||||
stride_dy_row,
|
||||
stride_dx_row,
|
||||
stride_dres_row,
|
||||
stride_dres_in_row,
|
||||
M, # number of rows in X
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
rows_per_program,
|
||||
IS_RMS_NORM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
HAS_DRESIDUAL: tl.constexpr,
|
||||
STORE_DRESIDUAL: tl.constexpr,
|
||||
HAS_BIAS: tl.constexpr,
|
||||
RECOMPUTE_OUTPUT: tl.constexpr,
|
||||
):
|
||||
# Map the program id to the elements of X, DX, and DY it should compute.
|
||||
row_block_id = tl.program_id(0)
|
||||
row_start = row_block_id * rows_per_program
|
||||
cols = tl.arange(0, BLOCK_N)
|
||||
mask = cols < N
|
||||
X += row_start * stride_x_row
|
||||
if HAS_DRESIDUAL:
|
||||
DRESIDUAL += row_start * stride_dres_row
|
||||
if STORE_DRESIDUAL:
|
||||
DRESIDUAL_IN += row_start * stride_dres_in_row
|
||||
DY += row_start * stride_dy_row
|
||||
DX += row_start * stride_dx_row
|
||||
if RECOMPUTE_OUTPUT:
|
||||
Y += row_start * stride_y_row
|
||||
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
||||
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
||||
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32)
|
||||
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
||||
if HAS_BIAS:
|
||||
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
||||
row_end = min((row_block_id + 1) * rows_per_program, M)
|
||||
for row in range(row_start, row_end):
|
||||
# Load data to SRAM
|
||||
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
||||
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
||||
if not IS_RMS_NORM:
|
||||
mean = tl.load(Mean + row)
|
||||
rstd = tl.load(Rstd + row)
|
||||
# Compute dx
|
||||
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
||||
xhat = tl.where(mask, xhat, 0.)
|
||||
if RECOMPUTE_OUTPUT:
|
||||
y = xhat * w + b if HAS_BIAS else xhat * w
|
||||
tl.store(Y + cols, y, mask=mask)
|
||||
wdy = w * dy
|
||||
dw += dy * xhat
|
||||
if HAS_BIAS:
|
||||
db += dy
|
||||
if not IS_RMS_NORM:
|
||||
c1 = tl.sum(xhat * wdy, axis=0) / N
|
||||
c2 = tl.sum(wdy, axis=0) / N
|
||||
dx = (wdy - (xhat * c1 + c2)) * rstd
|
||||
else:
|
||||
c1 = tl.sum(xhat * wdy, axis=0) / N
|
||||
dx = (wdy - xhat * c1) * rstd
|
||||
if HAS_DRESIDUAL:
|
||||
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
||||
dx += dres
|
||||
# Write dx
|
||||
if STORE_DRESIDUAL:
|
||||
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
||||
tl.store(DX + cols, dx, mask=mask)
|
||||
|
||||
X += stride_x_row
|
||||
if HAS_DRESIDUAL:
|
||||
DRESIDUAL += stride_dres_row
|
||||
if STORE_DRESIDUAL:
|
||||
DRESIDUAL_IN += stride_dres_in_row
|
||||
if RECOMPUTE_OUTPUT:
|
||||
Y += stride_y_row
|
||||
DY += stride_dy_row
|
||||
DX += stride_dx_row
|
||||
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
||||
if HAS_BIAS:
|
||||
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
||||
|
||||
|
||||
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, dresidual=None, is_rms_norm=False, x_dtype=None,
|
||||
recompute_output=False):
|
||||
M, N = x.shape
|
||||
assert x.stride(-1) == 1
|
||||
assert dy.stride(-1) == 1
|
||||
assert dy.shape == (M, N)
|
||||
if dresidual is not None:
|
||||
assert dresidual.stride(-1) == 1
|
||||
assert dresidual.shape == (M, N)
|
||||
assert weight.shape == (N,)
|
||||
assert weight.stride(-1) == 1
|
||||
if bias is not None:
|
||||
assert bias.stride(-1) == 1
|
||||
assert bias.shape == (N,)
|
||||
# allocate output
|
||||
dx = torch.empty_like(x) if x_dtype is None else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
||||
dresidual_in = torch.empty_like(dresidual) if dresidual is not None and dx.dtype != dresidual.dtype else None
|
||||
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
||||
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
if N > BLOCK_N:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
||||
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
||||
_db = torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) if bias is not None else None
|
||||
rows_per_program = math.ceil(M / sm_count)
|
||||
grid = (sm_count,)
|
||||
with torch.cuda.device(x.device.index):
|
||||
_layer_norm_bwd_kernel[grid](x, weight, bias, y,
|
||||
dy, dx, _dw, _db, dresidual, dresidual_in,
|
||||
mean, rstd,
|
||||
x.stride(0),
|
||||
0 if not recompute_output else y.stride(0),
|
||||
dy.stride(0), dx.stride(0),
|
||||
dresidual.stride(0) if dresidual is not None else 0,
|
||||
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
||||
M, N, eps,
|
||||
rows_per_program,
|
||||
is_rms_norm,
|
||||
BLOCK_N,
|
||||
dresidual is not None,
|
||||
dresidual_in is not None,
|
||||
bias is not None)
|
||||
dw = _dw.sum(0).to(weight.dtype)
|
||||
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
||||
# Don't need to compute dresidual_in separately in this case
|
||||
if dresidual is not None and dx.dtype == dresidual.dtype:
|
||||
dresidual_in = dx
|
||||
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
|
||||
|
||||
|
||||
class LayerNormFn(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
|
||||
x_shape_og = x.shape
|
||||
# reshape input data into 2D tensor
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
if x.stride(-1) != 1:
|
||||
x = x.contiguous()
|
||||
if residual is not None:
|
||||
assert residual.shape == x_shape_og
|
||||
residual = residual.reshape(-1, residual.shape[-1])
|
||||
if residual.stride(-1) != 1:
|
||||
residual = residual.contiguous()
|
||||
weight = weight.contiguous()
|
||||
if bias is not None:
|
||||
bias = bias.contiguous()
|
||||
y, mean, rstd, *rest = _layer_norm_fwd(x, weight, bias, eps, residual, is_rms_norm)
|
||||
if residual is not None:
|
||||
residual_out = rest[0]
|
||||
ctx.save_for_backward(x if residual is None else residual_out, weight, bias, mean, rstd)
|
||||
ctx.x_shape_og = x_shape_og
|
||||
ctx.eps = eps
|
||||
ctx.is_rms_norm = is_rms_norm
|
||||
ctx.has_residual = residual is not None
|
||||
ctx.x_dtype = x.dtype
|
||||
y = y.reshape(x_shape_og)
|
||||
return y if residual is None else (y, residual_out.reshape(x_shape_og))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy, *args):
|
||||
x, weight, bias, mean, rstd = ctx.saved_tensors
|
||||
dy = dy.reshape(-1, dy.shape[-1])
|
||||
if dy.stride(-1) != 1:
|
||||
dy = dy.contiguous()
|
||||
assert dy.shape == x.shape
|
||||
if ctx.has_residual:
|
||||
dresidual = args[0]
|
||||
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
||||
if dresidual.stride(-1) != 1:
|
||||
dresidual = dresidual.contiguous()
|
||||
assert dresidual.shape == x.shape
|
||||
else:
|
||||
dresidual = None
|
||||
dx, dw, db, dresidual_in = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, dresidual,
|
||||
ctx.is_rms_norm, x_dtype=ctx.x_dtype)
|
||||
return dx.reshape(ctx.x_shape_og), dw, db, dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, None, None
|
||||
|
||||
|
||||
def layer_norm_fn(x, weight, bias, residual=None, eps=1e-6, is_rms_norm=False):
|
||||
return LayerNormFn.apply(x, weight, bias, residual, eps, is_rms_norm)
|
||||
|
||||
|
||||
def rms_norm_fn(x, weight, bias, residual=None, eps=1e-6):
|
||||
return LayerNormFn.apply(x, weight, bias, residual, eps, True)
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
||||
self.register_parameter("bias", None)
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
torch.nn.init.ones_(self.weight)
|
||||
|
||||
def forward(self, x, residual=None):
|
||||
return layer_norm_fn(x, self.weight, self.bias, residual=residual, eps=self.eps, is_rms_norm=True)
|
||||
@ -213,7 +213,10 @@ def pytorch_profiler(
|
||||
"""Wrap benchmark functions in Pytorch profiler to see CUDA information."""
|
||||
if backward:
|
||||
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
||||
g = torch.randn_like(fn(*inputs, **kwinputs))
|
||||
out = fn(*inputs, **kwinputs)
|
||||
if type(out) is tuple:
|
||||
out = out[0]
|
||||
g = torch.randn_like(out)
|
||||
for _ in range(30): # Warm up
|
||||
if backward:
|
||||
for x in inputs:
|
||||
@ -221,6 +224,8 @@ def pytorch_profiler(
|
||||
x.grad = None
|
||||
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
||||
out = fn(*inputs, **kwinputs)
|
||||
if type(out) is tuple:
|
||||
out = out[0]
|
||||
# Backward should be done outside autocast
|
||||
if backward:
|
||||
out.backward(g, retain_graph=True)
|
||||
@ -239,6 +244,8 @@ def pytorch_profiler(
|
||||
x.grad = None
|
||||
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
||||
out = fn(*inputs, **kwinputs)
|
||||
if type(out) is tuple:
|
||||
out = out[0]
|
||||
if backward:
|
||||
out.backward(g, retain_graph=True)
|
||||
if verbose:
|
||||
|
||||
103
tests/ops/triton/test_layer_norm.py
Normal file
103
tests/ops/triton/test_layer_norm.py
Normal file
@ -0,0 +1,103 @@
|
||||
import math
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_norm_ref
|
||||
|
||||
|
||||
is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
|
||||
|
||||
|
||||
@pytest.mark.parametrize("is_rms_norm", [False, True])
|
||||
# @pytest.mark.parametrize("is_rms_norm", [True])
|
||||
@pytest.mark.parametrize("has_residual", [True, False])
|
||||
# @pytest.mark.parametrize("has_residual", [True])
|
||||
@pytest.mark.parametrize(
|
||||
"weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else [])
|
||||
)
|
||||
# @pytest.mark.parametrize("weight_dtype", [torch.float32])
|
||||
@pytest.mark.parametrize(
|
||||
"input_dtype,residual_dtype",
|
||||
[(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)]
|
||||
+ ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []),
|
||||
)
|
||||
# @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)])
|
||||
@pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192])
|
||||
# @pytest.mark.parametrize("hidden_size", [256])
|
||||
def test_layer_norm(
|
||||
hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm
|
||||
):
|
||||
device = "cuda"
|
||||
if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
||||
atol = 5e-2
|
||||
elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]):
|
||||
atol = 5e-3
|
||||
else:
|
||||
atol = 1e-4
|
||||
# set seed
|
||||
torch.random.manual_seed(0)
|
||||
batch_size = 8
|
||||
seqlen = 512
|
||||
# batch_size = 1
|
||||
# seqlen = 1
|
||||
layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref
|
||||
allclose = (
|
||||
lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max()
|
||||
<= 2 * (x_pt - x_ref).abs().max() + atol
|
||||
)
|
||||
x0 = torch.randn(
|
||||
batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True
|
||||
)
|
||||
x0_pt = x0.detach().clone().requires_grad_()
|
||||
x0_ref = x0.detach().clone().requires_grad_()
|
||||
if has_residual:
|
||||
res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
|
||||
res_pt = res.detach().clone().requires_grad_()
|
||||
res_ref = res.detach().clone().requires_grad_()
|
||||
else:
|
||||
res, res_pt, res_ref = None, None, None
|
||||
weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
||||
if not is_rms_norm:
|
||||
bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True)
|
||||
else:
|
||||
bias = None
|
||||
weight_pt = weight.detach().clone().requires_grad_()
|
||||
weight_ref = weight.detach().clone().requires_grad_()
|
||||
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
|
||||
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
|
||||
residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
|
||||
|
||||
out, *rest = layer_norm_fn(x0, weight, bias, residual=res, eps=1e-6, is_rms_norm=is_rms_norm)
|
||||
out_pt, *rest_pt = layer_norm_ref_fn(x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6)
|
||||
out_ref, *rest_ref = layer_norm_ref_fn(
|
||||
x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, upcast=True
|
||||
)
|
||||
if has_residual:
|
||||
residual = rest[0]
|
||||
residual_pt = rest_pt[0]
|
||||
residual_ref = rest_ref[0]
|
||||
residual_ref = x0_ref + res_ref
|
||||
assert out.dtype == input_dtype
|
||||
if has_residual:
|
||||
assert residual.dtype == residual_dtype
|
||||
assert allclose(residual, residual_pt, residual_ref)
|
||||
assert allclose(out, out_pt, out_ref)
|
||||
|
||||
g = torch.randn_like(out) / batch_size
|
||||
if not has_residual:
|
||||
out.backward(g)
|
||||
out_pt.backward(g)
|
||||
out_ref.backward(g)
|
||||
else:
|
||||
(out * F.sigmoid(residual)).backward(g)
|
||||
(out_pt * F.sigmoid(residual_pt)).backward(g)
|
||||
(out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
|
||||
assert allclose(x0.grad, x0_pt.grad, x0_ref.grad)
|
||||
if has_residual:
|
||||
assert allclose(res.grad, res_pt.grad, res_ref.grad)
|
||||
assert allclose(weight.grad, weight_pt.grad, weight_ref.grad)
|
||||
if bias is not None:
|
||||
assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)
|
||||
Loading…
Reference in New Issue
Block a user