Implement GPT-NeoX
This commit is contained in:
parent
f5d0fbd468
commit
993d12448e
@ -25,6 +25,7 @@ from flash_attn.utils.pretrained import state_dict_from_pretrained
|
||||
from flash_attn.utils.generation import GenerationMixin
|
||||
from flash_attn.models.opt import remap_state_dict_hf_opt
|
||||
from flash_attn.models.gptj import remap_state_dict_hf_gptj
|
||||
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
|
||||
|
||||
try:
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear
|
||||
@ -205,6 +206,8 @@ class GPTPreTrainedModel(nn.Module):
|
||||
elif model_name.startswith('EleutherAI/gpt-j-'):
|
||||
state_dict = remap_state_dict_hf_gptj(state_dict, config)
|
||||
strict = False # We have rotary_emb.inf_freq buffers not in the GPT-J checkpoint
|
||||
elif model_name.startswith('EleutherAI/gpt-neox-'):
|
||||
state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
|
||||
else:
|
||||
raise NotImplementedError(f'Model {model_name} not supported')
|
||||
if world_size > 1:
|
||||
@ -355,6 +358,7 @@ class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
|
||||
self.process_group = process_group
|
||||
self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
|
||||
self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
|
||||
lm_head_bias = getattr(config, 'lm_head_bias', False)
|
||||
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||||
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
|
||||
* pad_vocab_size_multiple)
|
||||
@ -366,13 +370,12 @@ class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
|
||||
else:
|
||||
self.project_out = None
|
||||
if process_group is None:
|
||||
self.lm_head = nn.Linear(embed_dim, vocab_size, bias=not self.tie_word_embeddings,
|
||||
**factory_kwargs)
|
||||
self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
|
||||
else:
|
||||
if ColumnParallelLinear is None:
|
||||
raise ImportError('fused_dense_lib is not installed')
|
||||
self.lm_head = ColumnParallelLinear(
|
||||
embed_dim, vocab_size, process_group, bias=not self.tie_word_embeddings,
|
||||
embed_dim, vocab_size, process_group, bias=lm_head_bias,
|
||||
sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
|
||||
)
|
||||
# Initialize weights and apply final processing
|
||||
|
||||
107
flash_attn/models/gpt_neox.py
Normal file
107
flash_attn/models/gpt_neox.py
Normal file
@ -0,0 +1,107 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
|
||||
import math
|
||||
import re
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from transformers import GPT2Config, GPTNeoXConfig
|
||||
|
||||
|
||||
def remap_state_dict_hf_gpt_neox(state_dict, config):
|
||||
def key_mapping_layers(key):
|
||||
return re.sub(r'^gpt_neox.', 'transformer.', key)
|
||||
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||||
# Word embedding
|
||||
def key_mapping_emb(key):
|
||||
return re.sub(r'^transformer.embed_in.', 'transformer.embeddings.word_embeddings.', key)
|
||||
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||||
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||||
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||||
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
||||
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||||
)
|
||||
if getattr(config, 'tie_word_embeddings'):
|
||||
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
||||
else:
|
||||
output_embeddings = state_dict.pop('embed_out.weight')
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
state_dict['lm_head.weight'] = F.pad(
|
||||
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||||
)
|
||||
|
||||
# LayerNorm
|
||||
def key_mapping_ln(key):
|
||||
key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).input_layernorm.', r'transformer.layers.\1.norm1.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.', r'transformer.layers.\1.norm2.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||||
|
||||
# MLP
|
||||
def key_mapping_mlp(key):
|
||||
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.', r'transformer.layers.\1.mlp.fc1.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.', r'transformer.layers.\1.mlp.fc2.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||||
|
||||
# Attention
|
||||
for l in range(config.n_layer):
|
||||
# We don't store these biases
|
||||
state_dict.pop(f'transformer.layers.{l}.attention.bias')
|
||||
state_dict.pop(f'transformer.layers.{l}.attention.masked_bias')
|
||||
# GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim)
|
||||
# while we store Wqkv as ((3 nheads headdim), hidden_dim)
|
||||
headdim = config.hidden_size // config.num_attention_heads
|
||||
Wqkv = state_dict.pop(f'transformer.layers.{l}.attention.query_key_value.weight')
|
||||
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = rearrange(
|
||||
Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
|
||||
three=3, headdim=headdim
|
||||
)
|
||||
bqkv = state_dict.pop(f'transformer.layers.{l}.attention.query_key_value.bias')
|
||||
state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = rearrange(
|
||||
bqkv, '(nheads three headdim) -> (three nheads headdim)',
|
||||
three=3, headdim=headdim
|
||||
)
|
||||
def key_mapping_attn(key):
|
||||
key = re.sub(r'^transformer.layers.(\d+).attention.dense.',
|
||||
r'transformer.layers.\1.mixer.out_proj.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).attention.rotary_emb.',
|
||||
r'transformer.layers.\1.mixer.rotary_emb.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config:
|
||||
assert gpt_neox_config.rotary_emb_base == 10000
|
||||
return GPT2Config(
|
||||
vocab_size=gpt_neox_config.vocab_size,
|
||||
n_positions=0, # No absolute position embedding
|
||||
n_embd=gpt_neox_config.hidden_size,
|
||||
n_layer=gpt_neox_config.num_hidden_layers,
|
||||
n_head=gpt_neox_config.num_attention_heads,
|
||||
n_inner=gpt_neox_config.intermediate_size,
|
||||
activation_function=gpt_neox_config.hidden_act,
|
||||
resid_pdrop=0.0, # No dropout
|
||||
embd_pdrop=0.0,
|
||||
attn_pdrop=0.0,
|
||||
layer_norm_epsilon=gpt_neox_config.layer_norm_eps,
|
||||
initializer_range=gpt_neox_config.initializer_range,
|
||||
bos_token_id=gpt_neox_config.bos_token_id,
|
||||
eos_token_id=gpt_neox_config.eos_token_id,
|
||||
# These are new arguments not in the original GPT2Config
|
||||
prenorm=True,
|
||||
parallel_block=gpt_neox_config.use_parallel_residual,
|
||||
parallel_block_tied_norm=False,
|
||||
rotary_emb_fraction=gpt_neox_config.rotary_pct,
|
||||
tie_word_embeddings=gpt_neox_config.tie_word_embeddings,
|
||||
)
|
||||
@ -34,6 +34,10 @@ def remap_state_dict_hf_gptj(state_dict, config):
|
||||
state_dict['lm_head.weight'] = F.pad(
|
||||
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||||
)
|
||||
output_embeddings_bias = state_dict.pop('lm_head.bias')
|
||||
state_dict['lm_head.bias'] = F.pad(
|
||||
output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
|
||||
)
|
||||
|
||||
# LayerNorm
|
||||
def key_mapping_ln(key):
|
||||
@ -92,4 +96,5 @@ def gptj_config_to_gpt2_config(gptj_config: GPTJConfig) -> GPT2Config:
|
||||
tie_word_embeddings=False,
|
||||
qkv_proj_bias=False,
|
||||
out_proj_bias=False,
|
||||
lm_head_bias=True,
|
||||
)
|
||||
|
||||
84
tests/models/test_gpt_neox.py
Normal file
84
tests/models/test_gpt_neox.py
Normal file
@ -0,0 +1,84 @@
|
||||
import time
|
||||
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from transformers import GPTNeoXConfig, AutoTokenizer
|
||||
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
||||
|
||||
from flash_attn.models.gpt import GPTLMHeadModel
|
||||
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
|
||||
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
||||
from flash_attn.utils.generation import update_graph_cache
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-neox-20b"])
|
||||
def test_gptj_state_dict(model_name):
|
||||
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
|
||||
pretrained_state_dict = remap_state_dict_hf_gpt_neox(state_dict_from_pretrained(model_name), config)
|
||||
model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow
|
||||
state_dict = model.state_dict()
|
||||
assert state_dict.keys() == pretrained_state_dict.keys()
|
||||
for k in state_dict.keys():
|
||||
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_name', ["EleutherAI/gpt-neox-20b"])
|
||||
def test_gpt_neox_optimized(model_name):
|
||||
"""Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the
|
||||
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
||||
forward pass in fp16, when compared to the HF forward pass in fp32.
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = 'cuda'
|
||||
config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
|
||||
config.fused_dropout_add_ln = False # We don't support parallel block yet
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
|
||||
device=device)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
logits = model(input_ids).logits
|
||||
del model
|
||||
|
||||
# Need at least 2 GPUs, otherwise we'll OOM
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map='auto')
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device)
|
||||
logits_ref = model_ref(input_ids).logits.to(device=device)
|
||||
del model_ref
|
||||
|
||||
model_hf = GPTNeoXForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
|
||||
device_map={"": device})
|
||||
model_hf.eval()
|
||||
with torch.no_grad():
|
||||
out_hf = model_hf.gpt_neox(input_ids).last_hidden_state
|
||||
logits_hf = model_hf(input_ids).logits
|
||||
del model_hf
|
||||
|
||||
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
|
||||
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
|
||||
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
|
||||
assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item()
|
||||
|
||||
print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
|
||||
print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * (logits_hf - logits_ref).abs().max().item()
|
||||
assert (logits - logits_ref).abs().mean().item() < 2 * (logits_hf - logits_ref).abs().mean().item()
|
||||
@ -3,7 +3,7 @@ import re
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from transformers import GPTJConfig
|
||||
from transformers import GPTJConfig, AutoTokenizer
|
||||
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
||||
|
||||
from flash_attn.models.gpt import GPTLMHeadModel
|
||||
@ -37,7 +37,6 @@ def test_gptj_optimized(model_name):
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = True
|
||||
config.fused_dropout_add_ln = False # We don't support parallel block yet
|
||||
# Only prenorm supports residual_in_fp32
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
||||
@ -46,22 +45,24 @@ def test_gptj_optimized(model_name):
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device='cuda')
|
||||
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
|
||||
device='cuda')
|
||||
device=device)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
logits = model(input_ids).logits
|
||||
del model
|
||||
|
||||
model_ref = GPTJForCausalLM.from_pretrained(model_name).to(device=device)
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.transformer(input_ids).last_hidden_state
|
||||
logits_ref = model_ref(input_ids).logits
|
||||
del model_ref
|
||||
|
||||
model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
|
||||
model_hf = GPTJForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
|
||||
device_map={"": device})
|
||||
model_hf.eval()
|
||||
out_hf = model_hf.transformer(input_ids).last_hidden_state
|
||||
logits_hf = model_hf(input_ids).logits
|
||||
|
||||
Loading…
Reference in New Issue
Block a user