[Gen] Add option to run generation with FT attention kernel

This commit is contained in:
Tri Dao 2023-01-03 22:10:31 -08:00
parent be1afaa276
commit a668890fcd
3 changed files with 54 additions and 21 deletions

View File

@ -30,6 +30,11 @@ try:
except ImportError:
RotaryEmbedding = None
try:
import ft_attention
except ImportError:
ft_attention = None
class FlashSelfAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
@ -360,23 +365,32 @@ class MHA(nn.Module):
assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
# Pre-allocate memory for key-values for inference.
if self.layer_idx not in inference_params.key_value_memory_dict:
inference_kv_cache = torch.empty(
kv_cache = torch.empty(
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
self.num_heads, self.head_dim, dtype=kv.dtype, device=kv.device
)
inference_params.key_value_memory_dict[self.layer_idx] = inference_kv_cache
inference_params.key_value_memory_dict[self.layer_idx] = kv_cache
else:
inference_kv_cache = inference_params.key_value_memory_dict[self.layer_idx]
assert not inference_params.fused_ft_kernel, 'fused_ft_kernel should not take this path'
kv_cache = inference_params.key_value_memory_dict[self.layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
assert batch_end <= inference_kv_cache.shape[0]
assert batch_end <= kv_cache.shape[0]
sequence_start = inference_params.sequence_len_offset
sequence_end = sequence_start + kv.shape[1]
assert sequence_end <= inference_kv_cache.shape[1]
assert sequence_end <= kv_cache.shape[1]
# Copy key and values.
inference_kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = inference_kv_cache[batch_start:batch_end, :sequence_end, ...]
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
if inference_params.fused_ft_kernel:
# FT kernel requires different layouts for the k_cache and v_cache.
assert kv_cache.dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if kv_cache.dtype == torch.float32 else 8
k_cache = rearrange(kv_cache[:, :, 0], 'b s h (d packsize) -> b h d s packsize',
packsize=packsize).contiguous()
v_cache = rearrange(kv_cache[:, :, 1], 'b s h d -> b h s d').contiguous()
inference_params.key_value_memory_dict[self.layer_idx] = (k_cache, v_cache)
return kv
def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None,
@ -430,14 +444,24 @@ class MHA(nn.Module):
else:
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
else:
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
q = qkv[:, :, 0]
kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
# If we're processing the prompt, causal=None (use self.causal).
# If we're decoding, then causal=False.
causal = None if inference_params.sequence_len_offset == 0 else False
context = self.inner_cross_attn(q, kv, causal=causal)
if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0:
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
q = qkv[:, :, 0]
kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
# If we're processing the prompt, causal=None (use self.causal).
# If we're decoding, then causal=False.
causal = None if inference_params.sequence_len_offset == 0 else False
context = self.inner_cross_attn(q, kv, causal=causal)
else:
assert ft_attention is not None
context = ft_attention.single_query_attention(
*rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1),
*inference_params.key_value_memory_dict[self.layer_idx],
inference_params.lengths_per_sample, inference_params.sequence_len_offset,
self.rotary_emb_dim
)
context = rearrange(context, 'b h d -> b 1 h d')
else:
if not self.return_residual:
q = self.Wq(x)

View File

@ -1,7 +1,10 @@
# Copyright (c) 2022, Tri Dao.
# Adapted from https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/forward_step.py#L31
from typing import Optional
from dataclasses import dataclass, field
import torch
from torch import Tensor
from einops import rearrange
@ -17,9 +20,11 @@ class InferenceParams:
sequence_len_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: dict = field(default_factory=dict)
fused_ft_kernel: bool = False
lengths_per_sample: Optional[Tensor] = None
def greedy_decode(input_ids, model, max_length):
def greedy_decode(input_ids, model, max_length, fused_ft_kernel=True):
"""Greedy decoding. This is a very simple implementation.
We assume that all sequences in the same batch have the same length.
Arguments:
@ -30,7 +35,8 @@ def greedy_decode(input_ids, model, max_length):
scores: tuples of (batch, vocab_size)
"""
batch_size, seqlen_og = input_ids.shape
inference_params = InferenceParams(max_sequence_len=max_length, max_batch_size=batch_size)
inference_params = InferenceParams(max_sequence_len=max_length, max_batch_size=batch_size,
fused_ft_kernel=fused_ft_kernel)
scores = []
with torch.inference_mode():
logits = model(input_ids, inference_params=inference_params).logits[:, -1]
@ -57,8 +63,9 @@ def greedy_decode(input_ids, model, max_length):
class GenerationMixin:
def generate(self, input_ids, max_length, return_dict_in_generate=False, output_scores=False):
output = greedy_decode(input_ids, self, max_length)
def generate(self, input_ids, max_length, return_dict_in_generate=False, output_scores=False,
**kwargs):
output = greedy_decode(input_ids, self, max_length, **kwargs)
if not output_scores:
output.scores = None
return output if return_dict_in_generate else output.sequences

View File

@ -15,10 +15,11 @@ from flash_attn.utils.generation import greedy_decode
# TODO: test with rotary embedding
@pytest.mark.parametrize('fused_ft_kernel', [False, True])
@pytest.mark.parametrize('optimized', [False, True])
# @pytest.mark.parametrize('optimized', [False])
# @pytest.mark.parametrize('optimized', [True])
@pytest.mark.parametrize('model_name', ["gpt2"])
def test_greedy_decode(model_name, optimized):
def test_greedy_decode(model_name, optimized, fused_ft_kernel):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
@ -62,6 +63,7 @@ def test_greedy_decode(model_name, optimized):
scores = tuple(scores)
out = model.generate(input_ids=input_ids, max_length=max_length,
fused_ft_kernel=fused_ft_kernel,
return_dict_in_generate=True, output_scores=True)
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,