FEAT: add codes which supporting for baichuan-inc/Baichuan-7B (#425)
This commit is contained in:
parent
25d6b1dbcb
commit
a8c35b4f57
161
flash_attn/models/baichuan.py
Normal file
161
flash_attn/models/baichuan.py
Normal file
@ -0,0 +1,161 @@
|
||||
# Copyright (c) 2023, GGGGGGXY.
|
||||
|
||||
import math
|
||||
import json
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange
|
||||
from transformers import GPT2Config, AutoConfig, PretrainedConfig
|
||||
|
||||
|
||||
# only support Baichuan-7B now
|
||||
def remap_state_dict_hf_baichuan(state_dict, config):
|
||||
def key_mapping_layers(key):
|
||||
return re.sub(r"^model.", "transformer.", key)
|
||||
|
||||
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||||
|
||||
# Word embedding
|
||||
def key_mapping_emb(key):
|
||||
return re.sub(
|
||||
r"^transformer.embed_tokens.",
|
||||
"transformer.embeddings.word_embeddings.",
|
||||
key,
|
||||
)
|
||||
|
||||
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||||
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
||||
vocab_size = (
|
||||
math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
|
||||
* pad_vocab_size_multiple
|
||||
)
|
||||
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
|
||||
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||||
)
|
||||
if getattr(config, "tie_word_embeddings"):
|
||||
state_dict["lm_head.weight"] = state_dict[
|
||||
"transformer.embeddings.word_embeddings.weight"
|
||||
]
|
||||
else:
|
||||
output_embeddings = state_dict.pop("lm_head.weight")
|
||||
# Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings
|
||||
# differently.
|
||||
vocab_size = (
|
||||
math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
|
||||
* pad_vocab_size_multiple
|
||||
)
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
state_dict["lm_head.weight"] = F.pad(
|
||||
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||||
)
|
||||
|
||||
# LayerNorm
|
||||
def key_mapping_ln(key):
|
||||
key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
|
||||
key = re.sub(
|
||||
r"^transformer.layers.(\d+).input_layernorm.",
|
||||
r"transformer.layers.\1.norm1.",
|
||||
key,
|
||||
)
|
||||
key = re.sub(
|
||||
r"^transformer.layers.(\d+).post_attention_layernorm.",
|
||||
r"transformer.layers.\1.norm2.",
|
||||
key,
|
||||
)
|
||||
return key
|
||||
|
||||
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||||
|
||||
# MLP
|
||||
for l in range(config.n_layer):
|
||||
w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight")
|
||||
w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight")
|
||||
# Our ordering is different
|
||||
state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat(
|
||||
[w3, w1], dim=0
|
||||
)
|
||||
|
||||
def key_mapping_mlp(key):
|
||||
return re.sub(
|
||||
r"^transformer.layers.(\d+).mlp.down_proj.",
|
||||
r"transformer.layers.\1.mlp.fc2.",
|
||||
key,
|
||||
)
|
||||
|
||||
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||||
|
||||
# Attention
|
||||
def key_mapping_attn(key):
|
||||
key = re.sub(
|
||||
r"^transformer.layers.(\d+).self_attn.W_pack.",
|
||||
r"transformer.layers.\1.mixer.Wqkv.",
|
||||
key,
|
||||
)
|
||||
key = re.sub(
|
||||
r"^transformer.layers.(\d+).self_attn.o_proj.",
|
||||
r"transformer.layers.\1.mixer.out_proj.",
|
||||
key,
|
||||
)
|
||||
return key
|
||||
|
||||
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||||
for l in range(config.n_layer):
|
||||
# pop rotary_emb.inv_freq from state dict
|
||||
state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq")
|
||||
return state_dict
|
||||
|
||||
|
||||
def config_from_checkpoint(checkpoint_path: str, model_name: str) -> PretrainedConfig:
|
||||
"""Load a BaiChuanConfig from a checkpoint path."""
|
||||
config = AutoConfig.from_pretrained(
|
||||
Path(checkpoint_path) / model_name, trust_remote_code=True
|
||||
)
|
||||
return config
|
||||
|
||||
|
||||
def state_dicts_from_checkpoint(checkpoint_path: str, model_name: str) -> dict:
|
||||
# Need to sort, otherwise we mess up the ordering and the weights are wrong
|
||||
return [
|
||||
torch.load(path, map_location="cpu")
|
||||
for path in sorted(
|
||||
(Path(checkpoint_path) / model_name).glob("pytorch_model*.bin")
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config:
|
||||
return GPT2Config(
|
||||
vocab_size=baichuan_config.vocab_size,
|
||||
n_positions=0, # No absolute position embedding
|
||||
n_embd=baichuan_config.hidden_size,
|
||||
n_layer=baichuan_config.num_hidden_layers,
|
||||
n_head=baichuan_config.num_attention_heads,
|
||||
n_inner=baichuan_config.intermediate_size,
|
||||
activation_function="swiglu", # Hardcode since HF calls it 'silu'
|
||||
# baichuan doesn't have dropout, idk if it's because they only release the inference code
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attn_pdrop=0.0,
|
||||
layer_norm_epsilon=baichuan_config.rms_norm_eps,
|
||||
initializer_range=baichuan_config.initializer_range,
|
||||
bos_token_id=baichuan_config.bos_token_id,
|
||||
eos_token_id=baichuan_config.eos_token_id,
|
||||
# These are new arguments not in the original GPT2Config
|
||||
pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything
|
||||
rms_norm=True,
|
||||
rotary_emb_fraction=1.0,
|
||||
rotary_emb_interleaved=False,
|
||||
tie_word_embeddings=False,
|
||||
qkv_proj_bias=False,
|
||||
out_proj_bias=False,
|
||||
mlp_fc1_bias=False,
|
||||
mlp_fc2_bias=False,
|
||||
)
|
||||
508
tests/models/test_baichuan.py
Normal file
508
tests/models/test_baichuan.py
Normal file
@ -0,0 +1,508 @@
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
current_dir = Path(__file__).parent.absolute()
|
||||
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from flash_attn.models.gpt import (
|
||||
GPTLMHeadModel,
|
||||
combine_state_dicts_tp,
|
||||
shard_state_dict_tp,
|
||||
)
|
||||
from flash_attn.models.baichuan import (
|
||||
remap_state_dict_hf_baichuan,
|
||||
baichuan_config_to_gpt2_config,
|
||||
)
|
||||
from flash_attn.models.baichuan import (
|
||||
config_from_checkpoint,
|
||||
state_dicts_from_checkpoint,
|
||||
)
|
||||
from flash_attn.utils.distributed import all_gather_raw
|
||||
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
||||
from flash_attn.utils.generation import update_graph_cache
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", ["Baichuan-7B"])
|
||||
def test_baichuan_state_dict(model_name):
|
||||
checkpoint_path = Path(
|
||||
os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")
|
||||
)
|
||||
config = baichuan_config_to_gpt2_config(
|
||||
config_from_checkpoint(checkpoint_path, model_name)
|
||||
)
|
||||
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
||||
pretrained_state_dict = remap_state_dict_hf_baichuan(ckpt_state_dicts[0], config)
|
||||
model = GPTLMHeadModel(
|
||||
config, device="meta"
|
||||
) # Without device='meta' init is very slow
|
||||
state_dict = model.state_dict()
|
||||
assert len(state_dict.keys()) == len(pretrained_state_dict.keys())
|
||||
assert state_dict.keys() == pretrained_state_dict.keys()
|
||||
for k in state_dict.keys():
|
||||
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", ["Baichuan-7B"])
|
||||
def test_baichuan_optimized(model_name):
|
||||
"""Check that our implementation of Baichuan (with all optimizations enabled) matches the
|
||||
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
||||
forward pass in fp16, when compared to the HF forward pass in fp32.
|
||||
"""
|
||||
checkpoint_path = Path(
|
||||
os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")
|
||||
)
|
||||
|
||||
dtype = torch.float16
|
||||
device = "cuda"
|
||||
config = baichuan_config_to_gpt2_config(
|
||||
config_from_checkpoint(checkpoint_path, model_name)
|
||||
)
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused GatedMLP yet
|
||||
config.fused_dropout_add_ln = True
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
||||
pretrained_state_dicts = [
|
||||
remap_state_dict_hf_baichuan(s, config) for s in ckpt_state_dicts
|
||||
]
|
||||
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
|
||||
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
||||
model.load_state_dict(pretrained_state_dict)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
seqlens = torch.randint(
|
||||
max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device
|
||||
)
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
logits = model(input_ids).logits
|
||||
del model
|
||||
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
|
||||
logits_ref = model_ref(input_ids).logits.to(device=device)
|
||||
del model_ref
|
||||
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map={"": device},
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_hf.eval()
|
||||
with torch.no_grad():
|
||||
out_hf = model_hf.model(input_ids).last_hidden_state
|
||||
logits_hf = model_hf(input_ids).logits
|
||||
del model_hf
|
||||
|
||||
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
||||
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
||||
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
||||
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
||||
assert (out - out_ref).abs().max().item() < 3 * (
|
||||
out_hf - out_ref
|
||||
).abs().max().item()
|
||||
|
||||
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
||||
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
||||
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
||||
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
||||
assert (logits - logits_ref).abs().max().item() < 3 * (
|
||||
logits_hf - logits_ref
|
||||
).abs().max().item()
|
||||
|
||||
|
||||
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "test_baichuan_parallel"
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@pytest.mark.parametrize("model_name", ["Baichuan-7B"])
|
||||
def test_baichuan_parallel(model_name, world_size):
|
||||
"""Check that our implementation of Baichuan (with all optimizations enabled) matches the
|
||||
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
||||
forward pass in fp16, when compared to the HF forward pass in fp32.
|
||||
"""
|
||||
from apex.transformer import parallel_state
|
||||
|
||||
checkpoint_path = Path(
|
||||
os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")
|
||||
)
|
||||
|
||||
dtype = torch.float16
|
||||
config = baichuan_config_to_gpt2_config(
|
||||
config_from_checkpoint(checkpoint_path, model_name)
|
||||
)
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused GatedMLP yet
|
||||
config.fused_dropout_add_ln = True
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
||||
device = f"cuda:{torch.distributed.get_rank()}"
|
||||
assert world_size <= torch.distributed.get_world_size()
|
||||
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||||
rank = parallel_state.get_tensor_model_parallel_rank()
|
||||
process_group = parallel_state.get_tensor_model_parallel_group()
|
||||
|
||||
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
||||
pretrained_state_dicts = [
|
||||
remap_state_dict_hf_baichuan(s, config) for s in ckpt_state_dicts
|
||||
]
|
||||
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
|
||||
|
||||
model = GPTLMHeadModel(
|
||||
config, process_group=process_group, device=device, dtype=dtype
|
||||
)
|
||||
model.load_state_dict(
|
||||
shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)
|
||||
)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
seqlens = torch.randint(
|
||||
max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device
|
||||
)
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
out, _ = all_gather_raw(out, process_group=process_group)
|
||||
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
|
||||
logits = model(input_ids).logits
|
||||
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
|
||||
logits, _ = all_gather_raw(logits, process_group)
|
||||
logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size)
|
||||
del model
|
||||
|
||||
if rank == 0:
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device)
|
||||
logits_ref = model_ref(input_ids).logits.to(device=device)
|
||||
del model_ref
|
||||
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_hf.eval()
|
||||
with torch.no_grad():
|
||||
out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device)
|
||||
logits_hf = model_hf(input_ids).logits.to(device=device)
|
||||
del model_hf
|
||||
|
||||
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
||||
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
||||
print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
|
||||
print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
|
||||
assert (out - out_ref).abs().max().item() < 2 * (
|
||||
out_hf - out_ref
|
||||
).abs().max().item()
|
||||
|
||||
print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
|
||||
print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
|
||||
print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
|
||||
print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * (
|
||||
logits_hf - logits_ref
|
||||
).abs().max().item()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", ["Baichuan-7B"])
|
||||
def test_baichuan_generation(model_name):
|
||||
checkpoint_path = Path(
|
||||
os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")
|
||||
)
|
||||
|
||||
dtype = torch.float16
|
||||
device = "cuda"
|
||||
config = baichuan_config_to_gpt2_config(
|
||||
config_from_checkpoint(checkpoint_path, model_name)
|
||||
)
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused GatedMLP yet
|
||||
config.fused_dropout_add_ln = True
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
Path(checkpoint_path) / model_name, trust_remote_code=True
|
||||
)
|
||||
eos_token_id = tokenizer.eos_token_id
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
seqlen = 100
|
||||
max_length = 150
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map={"": device},
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_hf.eval()
|
||||
print("HF fp16")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out_hf = model_hf.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
||||
del model_hf
|
||||
|
||||
# Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
logits_ref = (
|
||||
model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device)
|
||||
)
|
||||
del model_ref
|
||||
|
||||
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
||||
pretrained_state_dicts = [
|
||||
remap_state_dict_hf_baichuan(s, config) for s in ckpt_state_dicts
|
||||
]
|
||||
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
|
||||
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
||||
model.load_state_dict(pretrained_state_dict)
|
||||
model.eval()
|
||||
|
||||
print("Without CUDA graph")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
eos_token_id=eos_token_id,
|
||||
fused_ft_kernel=True,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
teacher_outputs=out_hf.sequences,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
||||
|
||||
# Capture graph outside the timing loop
|
||||
batch_size, seqlen_og = input_ids.shape
|
||||
model._decoding_cache = update_graph_cache(
|
||||
model, None, batch_size, seqlen_og, max_length
|
||||
)
|
||||
print("With CUDA graph")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out_cg = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
fused_ft_kernel=True,
|
||||
cg=True,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
teacher_outputs=out_hf.sequences,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
|
||||
|
||||
with torch.no_grad():
|
||||
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
||||
logits_hf = torch.stack(out_hf.scores, dim=1)
|
||||
logits = torch.stack(out.scores, dim=1)
|
||||
logits_cg = torch.stack(out_cg.scores, dim=1)
|
||||
|
||||
del model
|
||||
|
||||
hf_error = (logits_hf - logits_ref).abs().max().item()
|
||||
|
||||
print(f"HF fp16 logits max diff: {hf_error}")
|
||||
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
|
||||
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
|
||||
|
||||
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
||||
assert torch.equal(logits_cg, logits)
|
||||
|
||||
|
||||
# torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_baichuan.py -k "baichuan_parallel_generation"
|
||||
@pytest.mark.parametrize("world_size", [2])
|
||||
@pytest.mark.parametrize("model_name", ["Baichuan-7B"])
|
||||
def test_baichuan_parallel_generation(model_name, world_size):
|
||||
"""Check that our implementation matches the HF implementation:
|
||||
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
|
||||
the HF scores in fp32.
|
||||
"""
|
||||
from apex.transformer import parallel_state
|
||||
|
||||
checkpoint_path = Path(
|
||||
os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")
|
||||
)
|
||||
|
||||
dtype = torch.float16
|
||||
config = baichuan_config_to_gpt2_config(
|
||||
config_from_checkpoint(checkpoint_path, model_name)
|
||||
)
|
||||
config.use_flash_attn = False
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused GatedMLP yet
|
||||
config.fused_dropout_add_ln = False
|
||||
config.residual_in_fp32 = True
|
||||
config.pad_vocab_size_multiple = 8 * world_size
|
||||
config.sequence_parallel = False # Need to set this to False for generation
|
||||
|
||||
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group(backend="nccl", init_method="env://")
|
||||
device = f"cuda:{torch.distributed.get_rank()}"
|
||||
assert world_size <= torch.distributed.get_world_size()
|
||||
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||||
rank = parallel_state.get_tensor_model_parallel_rank()
|
||||
process_group = parallel_state.get_tensor_model_parallel_group()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
seqlen = 100
|
||||
max_length = 150
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
|
||||
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
|
||||
# GPU0 and GPU1 and things would hang
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name)
|
||||
pretrained_state_dicts = [
|
||||
remap_state_dict_hf_baichuan(s, config) for s in ckpt_state_dicts
|
||||
]
|
||||
pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config)
|
||||
|
||||
model = GPTLMHeadModel(
|
||||
config, process_group=process_group, device=device, dtype=dtype
|
||||
)
|
||||
model.load_state_dict(
|
||||
shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)
|
||||
)
|
||||
model.eval()
|
||||
|
||||
print("Without CUDA graph")
|
||||
out = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
tensor_parallel=world_size,
|
||||
vocab_size=config.vocab_size,
|
||||
fused_ft_kernel=True,
|
||||
# teacher_outputs=out_hf.sequences,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
)
|
||||
|
||||
# Capture graph outside the timing loop
|
||||
batch_size, seqlen_og = input_ids.shape
|
||||
model._decoding_cache = update_graph_cache(
|
||||
model, None, batch_size, seqlen_og, max_length
|
||||
)
|
||||
print("With CUDA graph")
|
||||
out_cg = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
tensor_parallel=world_size,
|
||||
vocab_size=config.vocab_size,
|
||||
fused_ft_kernel=True,
|
||||
cg=True,
|
||||
# teacher_outputs=out_hf.sequences,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
)
|
||||
del model
|
||||
parallel_state.destroy_model_parallel()
|
||||
|
||||
if rank == 0:
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_hf.eval()
|
||||
print("HF fp16")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
with torch.inference_mode():
|
||||
out_hf = model_hf.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms"
|
||||
)
|
||||
del model_hf
|
||||
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
Path(checkpoint_path) / model_name,
|
||||
device_map="auto",
|
||||
trust_remote_code=True,
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.inference_mode():
|
||||
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
|
||||
del model_ref
|
||||
logits_hf = torch.stack(out_hf.scores, dim=1)
|
||||
|
||||
logits = torch.stack(out.scores, dim=1)
|
||||
logits_cg = torch.stack(out_cg.scores, dim=1)
|
||||
|
||||
hf_error = (logits_hf - logits_ref).abs().max().item()
|
||||
print(f"HF fp16 logits max diff: {hf_error}")
|
||||
print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
||||
print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
|
||||
assert torch.equal(logits_cg, logits)
|
||||
Loading…
Reference in New Issue
Block a user