Implement Tensor Parallel for transformer Block

This commit is contained in:
Tri Dao 2022-12-25 11:40:14 -08:00
parent 1e712ea8b0
commit a8cfe51551
4 changed files with 208 additions and 5 deletions

View File

@ -1,5 +1,6 @@
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"
#include <c10/cuda/CUDAGuard.h>
#include "ln.h"
@ -166,6 +167,10 @@ std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0, // Input:
TORCH_CHECK(epsilon >= 0.f);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)x0.get_device()};
auto opts = x0.options();
bool save_x = x1_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || x0_subset_.has_value() || (itype != rtype);
@ -364,6 +369,10 @@ std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz, // BxSxhidd
TORCH_CHECK(gamma.numel() == cols);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)dz.get_device()};
auto opts = x.options();
auto dx0 = torch::empty(x0_sizes, opts.dtype(itype));

View File

@ -23,7 +23,7 @@ class Block(nn.Module):
def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm,
dropout_cls=nn.Dropout, prenorm=True, resid_dropout=0., drop_path=0.,
fused_dropout_add_ln=False, return_residual=False):
fused_dropout_add_ln=False, return_residual=False, sequence_parallel=False):
"""
return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
This is for performance reason: for post-norm architecture, returning the input allows us
@ -51,6 +51,14 @@ class Block(nn.Module):
assert dropout_add_layer_norm is not None, 'dropout_add_ln is not installed'
assert isinstance(self.norm1, nn.LayerNorm) and isinstance(self.dropout1, nn.Dropout)
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
if sequence_parallel:
for p in self.norm1.parameters():
p._sequence_parallel = True
if hasattr(self, 'norm2'):
for p in self.norm2.parameters():
p._sequence_parallel = True
def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None,
mixer_kwargs=None):
r"""Pass the input through the encoder layer.

View File

@ -27,15 +27,15 @@ class FusedDenseFunc(torch.autograd.Function):
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather_raw of x before doing the matmul.
"""
ctx.compute_weight_gradient = weight.requires_grad
ctx.return_residual = return_residual
ctx.process_group = process_group
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
x, weight = [a.to(dtype=dtype) for a in [x, weight]]
bias = bias.to(dtype=dtype) if bias is not None else None
ctx.return_residual = return_residual
ctx.process_group = process_group
ctx.compute_weight_gradient = weight.requires_grad
x = x.contiguous()
weight = weight.contiguous()
if ctx.compute_weight_gradient:

View File

@ -0,0 +1,186 @@
# Run test with:
# torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytest
from einops import rearrange
from apex.transformer import parallel_state
from apex.transformer import tensor_parallel
from flash_attn.modules.mha import MHA, ParallelMHA
from flash_attn.modules.mlp import FusedDenseGeluDense, ParallelFusedDenseGeluDense
from flash_attn.modules.block import Block
is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
@pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
@pytest.mark.parametrize('world_size', [1, 2, 4, 8])
# @pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('dim', [1024])
def test_block_parallel(dim, world_size, dtype):
head_dim = 64
assert dim % head_dim == 0
num_heads = dim // head_dim
assert num_heads % world_size == 0
rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='nccl', init_method='env://')
device = f'cuda:{torch.distributed.get_rank()}'
assert world_size <= torch.distributed.get_world_size()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
rank = parallel_state.get_tensor_model_parallel_rank()
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen = 1024
assert (batch_size * seqlen) % world_size == 0
x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype,
requires_grad=True)
residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
# We need to generate g here so that all processes get the same gradient,
# as rank 0 will have an extra bias that changes the RNG.
# If we don't divide by batch_size, the gradient gets a bit too large.
g = torch.randn_like(x_pt) / 32
x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_()
residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_()
mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2),
use_flash_attn=True, device=device, dtype=dtype)
mlp_cls_pt = partial(FusedDenseGeluDense, hidden_features=4 * dim,
device=device, dtype=dtype)
norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
with torch.no_grad():
nn.init.normal_(model_pt.norm1.weight)
nn.init.normal_(model_pt.norm1.bias)
nn.init.normal_(model_pt.norm2.weight)
nn.init.normal_(model_pt.norm2.bias)
mixer_cls = partial(ParallelMHA, num_heads=num_heads,
process_group=parallel_state.get_tensor_model_parallel_group(),
rotary_emb_dim=int(head_dim // 2), use_flash_attn=True,
device=device, dtype=dtype)
mlp_cls = partial(ParallelFusedDenseGeluDense, hidden_features=4 * dim,
process_group=parallel_state.get_tensor_model_parallel_group(),
device=device, dtype=dtype)
model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True,
sequence_parallel=True)
partition_dim = dim // world_size
partition_hidden_dim = 4 * dim // world_size
with torch.no_grad():
model.mixer.Wqkv.weight.copy_(
rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
'three o i -> (three o) i')
)
model.mixer.Wqkv.bias.copy_(
rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
'three o -> (three o)')
)
model.mixer.out_proj.weight.copy_(
model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim]
)
if rank == 0:
model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
model.mlp.fc1.weight.copy_(
model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
)
model.mlp.fc1.bias.copy_(
model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
)
model.mlp.fc2.weight.copy_(
model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim]
)
if rank == 0:
model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
model.norm1.weight.copy_(model_pt.norm1.weight)
model.norm1.bias.copy_(model_pt.norm1.bias)
model.norm2.weight.copy_(model_pt.norm2.weight)
model.norm2.bias.copy_(model_pt.norm2.bias)
mixer_kwargs = {'seqlen': seqlen}
out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen),
rearrange(residual_pt, '(b s) d -> b s d', s=seqlen))
out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]]
partition_batch_dim = batch_size * seqlen // world_size
assert torch.allclose(
out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
assert torch.allclose(
out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
out_pt.backward(g)
out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim])
# We want to iterate over parameters with _sequence_parallel=True in the same order,
# as different ranks might have different number of parameters (e.g., only rank 0 has bias).
params_seqparallel = {name: p for name, p in model.named_parameters()
if getattr(p, '_sequence_parallel', False)}
for _, p in sorted(params_seqparallel.items()):
if getattr(p, '_sequence_parallel', False):
torch.distributed.all_reduce(p.grad, group=parallel_state.get_tensor_model_parallel_group())
parallel_state.destroy_model_parallel()
assert torch.allclose(
x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
assert torch.allclose(
residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim],
rtol=rtol, atol=atol
)
# The error for d_weight and d_bias is quite a bit higher
assert torch.allclose(
model.mixer.Wqkv.weight.grad,
rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
'three o i -> (three o) i'),
rtol=rtol, atol=atol * 10
)
assert torch.allclose(
model.mixer.Wqkv.bias.grad,
rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim],
'three o -> (three o)'),
rtol=rtol, atol=atol * 5
)
assert torch.allclose(
model.mixer.out_proj.weight.grad,
model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim],
rtol=rtol, atol=atol * 10
)
if rank == 0:
assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5)
assert torch.allclose(
model.mlp.fc1.weight.grad,
model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
rtol=rtol, atol=atol * 10
)
assert torch.allclose(
model.mlp.fc1.bias.grad,
model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
rtol=rtol, atol=atol * 5
)
assert torch.allclose(
model.mlp.fc2.weight.grad,
model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim],
rtol=rtol, atol=atol * 10
)
if rank == 0:
assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad,
rtol=rtol, atol=atol * 5)
assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5)
assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5)
assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)