Merge pull request #1115 from ipiszy/bench

Add cudnn benchmark for var-len
This commit is contained in:
Ying Zhang 2024-07-31 22:42:06 -07:00 committed by GitHub
commit abffb0f98c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -48,7 +48,7 @@ def convert_to_cudnn_type(torch_type):
raise ValueError("Unsupported tensor data type.")
def cudnn_sdpa_setup(q, k, v, grad, causal=False):
def cudnn_sdpa_setup(q, k, v, grad, causal=False, varlen=False, seqlens=None):
b, nheads, seqlen_q, headdim = q.shape
_, _, seqlen_k, _ = k.shape
assert v.shape == (b, nheads, seqlen_k, headdim)
@ -65,6 +65,10 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
k_forward = graph_forward.tensor_like(k_gpu.detach())
v_forward = graph_forward.tensor_like(v_gpu.detach())
seqlens_reshaped = seqlens.reshape(b, 1, 1, 1).contiguous().cuda() if varlen else None
seq_len_q = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None
seq_len_kv = graph_forward.tensor_like(seqlens_reshaped.detach()) if varlen else None
o_forward, stats_forward = graph_forward.sdpa(
name="sdpa",
q=q_forward,
@ -73,6 +77,9 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
is_inference=False,
attn_scale=1.0 / math.sqrt(headdim),
use_causal_mask=causal,
use_padding_mask=varlen,
seq_len_q=seq_len_q,
seq_len_kv=seq_len_kv,
)
o_forward.set_output(True).set_dim(o_gpu.shape).set_stride(o_gpu.stride())
@ -90,6 +97,8 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
v_forward: v_gpu,
o_forward: o_gpu,
stats_forward: stats_gpu,
seq_len_q: seqlens_reshaped,
seq_len_kv: seqlens_reshaped,
}
dQ_gpu = torch.empty_like(q_gpu)
@ -109,6 +118,8 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
o_backward = graph_backward.tensor_like(o_gpu.detach())
dO_backward = graph_backward.tensor_like(dO_gpu.detach())
stats_backward = graph_backward.tensor_like(stats_gpu.detach())
seq_len_q = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None
seq_len_kv = graph_backward.tensor_like(seqlens_reshaped.detach()) if varlen else None
dQ_backward, dK_backward, dV_backward = graph_backward.sdpa_backward(
name="sdpa_backward",
@ -120,6 +131,9 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
stats=stats_backward,
attn_scale=1.0 / math.sqrt(headdim),
use_causal_mask=causal,
use_padding_mask=varlen,
seq_len_q=seq_len_q,
seq_len_kv=seq_len_kv,
)
dQ_backward.set_output(True).set_dim(dQ_gpu.size()).set_stride(dQ_gpu.stride())
@ -142,6 +156,8 @@ def cudnn_sdpa_setup(q, k, v, grad, causal=False):
dQ_backward: dQ_gpu,
dK_backward: dK_gpu,
dV_backward: dV_gpu,
seq_len_q: seqlens_reshaped,
seq_len_kv: seqlens_reshaped,
}
workspace = torch.empty(
@ -208,8 +224,12 @@ for mode in ['fwd']:
for causal in [False, True]:
# for causal in [True]:
print(f"\n### {headdim = }, {seqlen = }, {causal = } ###")
# For var-seq-len
lens = torch.full([q.shape[0]], seqlen, dtype=torch.int32)
cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), torch.cumsum(lens, dim=0, dtype=torch.int32)]).cuda()
if headdim <= 128 and cudnn is not None:
cudnn_sdpa_fwd, cudnn_sdpa_bwd = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), causal=causal)
cudnn_sdpa_fwd_varlen, cudnn_sdpa_bwd_varlen = cudnn_sdpa_setup(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), grad.transpose(1, 2), causal=causal, varlen=True, seqlens=lens)
f = flops(batch_size, nheads, seqlen, seqlen, headdim, causal=causal, mode=mode)
_, m0 = bench_fn(flash_attn_func, q, k, v, dropout_p, causal=causal, repeats=repeats, verbose=verbose, desc='Fav2')
if mode == 'bwd':
@ -234,6 +254,7 @@ for mode in ['fwd']:
time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
if mode == 'fwd':
_, m2 = benchmark_forward(cudnn_sdpa_fwd, repeats=repeats, verbose=verbose, desc='CuDNN')
_, m2_var = benchmark_forward(cudnn_sdpa_fwd_varlen, repeats=repeats, verbose=verbose, desc='CuDNN')
else:
cudnn_sdpa_fwd()
_, m2 = benchmark_forward(cudnn_sdpa_bwd, repeats=repeats, verbose=verbose, desc='CuDNN')
@ -248,8 +269,6 @@ for mode in ['fwd']:
q_var = q.reshape(-1, q.shape[-2], q.shape[-1])
k_var = k.reshape(-1, k.shape[-2], k.shape[-1])
v_var = v.reshape(-1, v.shape[-2], v.shape[-1])
lens = torch.full([q.shape[0]], seqlen, dtype=torch.int32)
cu_seqlens = torch.cat([torch.tensor([0], dtype=torch.int32), torch.cumsum(lens, dim=0, dtype=torch.int32)]).cuda()
time.sleep(1)
_, m1_var = bench_fn(flash_attn_varlen_func_v3, q_var, k_var, v_var, cu_seqlens, cu_seqlens, seqlen, seqlen, causal=causal, repeats=repeats, verbose=verbose, desc='Fav3 var len')
if mode == 'bwd':
@ -267,6 +286,7 @@ for mode in ['fwd']:
print(f'Triton: {m3.mean * 1e3:.3f}ms, {(f / m3.mean * 1e-12):.1f} TFLOPS')
if cudnn is not None:
print(f'CuDNN: {m2.mean * 1e3:.3f}ms, {(f / m2.mean * 1e-12):.1f} TFLOPS')
print(f'CuDNN varlen: {m2_var.mean * 1e3:.3f}ms, {(f / m2_var.mean * 1e-12):.1f} TFLOPS')
if headdim == 128 or mode == 'fwd':
print(f'Fav3: {m1.mean * 1e3:.3f}ms, {(f / m1.mean * 1e-12):.1f} TFLOPS')
print(f'Fav3 varlen: {m1_var.mean * 1e3:.3f}ms, {(f / m1_var.mean * 1e-12):.1f} TFLOPS')