[Gen] Move allocate_inference_cache to within the model
This commit is contained in:
parent
3da42d24b1
commit
ba2fe7f378
@ -335,6 +335,10 @@ class GPTModel(GPTPreTrainedModel):
|
||||
if self.process_group is not None:
|
||||
sync_shared_params(self, self.process_group)
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return {i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
||||
for i, layer in enumerate(self.layers)}
|
||||
|
||||
def forward(self, input_ids, position_ids=None, inference_params=None):
|
||||
# If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
|
||||
# dimensions so that we can split on it easily, in case of small batch size.
|
||||
@ -426,6 +430,10 @@ class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
|
||||
if self.process_group is not None:
|
||||
sync_shared_params(self, self.process_group)
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return self.transformer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype,
|
||||
**kwargs)
|
||||
|
||||
def forward(self, input_ids, position_ids=None, inference_params=None, last_token_only=False):
|
||||
"""
|
||||
inference_params: for generation. Adapted from Megatron-LM (and Apex)
|
||||
|
||||
@ -105,6 +105,9 @@ class Block(nn.Module):
|
||||
for p in self.norm2.parameters():
|
||||
p._shared_params = True
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
||||
|
||||
def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None,
|
||||
mixer_subset=None, mixer_kwargs=None):
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
@ -416,6 +416,22 @@ class MHA(nn.Module):
|
||||
attention_dropout=dropout)
|
||||
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True):
|
||||
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
||||
device = self.out_proj.weight.device
|
||||
if not fused_ft_kernel:
|
||||
return torch.empty(batch_size, max_seqlen, 2, self.num_heads, self.head_dim,
|
||||
dtype=dtype, device=device)
|
||||
else:
|
||||
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
|
||||
packsize = 4 if dtype == torch.float32 else 8
|
||||
assert self.head_dim % packsize == 0
|
||||
k_cache = torch.empty(batch_size, self.num_heads, self.head_dim // packsize, max_seqlen,
|
||||
packsize, dtype=dtype, device=device)
|
||||
v_cache = torch.empty(batch_size, self.num_heads, max_seqlen, self.head_dim,
|
||||
dtype=dtype, device=device)
|
||||
return k_cache, v_cache
|
||||
|
||||
def _update_kv_cache(self, kv, inference_params):
|
||||
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
||||
"""
|
||||
|
||||
@ -167,8 +167,8 @@ class GenerationMixin:
|
||||
return output if return_dict_in_generate else output.sequences
|
||||
|
||||
|
||||
def allocate_kv_cache(max_batch_size, max_seqlen, nheads, headdim, layers: Union[int, Sequence],
|
||||
device, dtype=torch.float16):
|
||||
def allocate_inference_cache(max_batch_size, max_seqlen, nheads, headdim, layers: Union[int, Sequence],
|
||||
device, dtype=torch.float16):
|
||||
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
|
||||
packsize = 4 if dtype == torch.float32 else 8
|
||||
assert headdim % packsize == 0
|
||||
@ -226,14 +226,17 @@ def update_graph_cache(model, cache, batch_size, seqlen_og, max_seqlen, tensor_p
|
||||
cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
|
||||
headdim = getattr(model.config, 'head_dim',
|
||||
model.config.hidden_size // model.config.num_attention_heads)
|
||||
kv_cache = allocate_kv_cache(
|
||||
batch_size, max_seqlen, model.config.num_attention_heads // tensor_parallel, headdim,
|
||||
model.config.num_hidden_layers, device, dtype
|
||||
)
|
||||
if hasattr(model, 'allocate_inference_cache'):
|
||||
inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
|
||||
else:
|
||||
inf_cache = allocate_inference_cache(
|
||||
batch_size, max_seqlen, model.config.num_attention_heads // tensor_parallel, headdim,
|
||||
model.config.num_hidden_layers, device, dtype
|
||||
)
|
||||
lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
|
||||
cache.inference_params = InferenceParams(
|
||||
max_sequence_len=max_seqlen, max_batch_size=batch_size,
|
||||
sequence_len_offset=seqlen_og, key_value_memory_dict=kv_cache, fused_ft_kernel=True,
|
||||
sequence_len_offset=seqlen_og, key_value_memory_dict=inf_cache, fused_ft_kernel=True,
|
||||
lengths_per_sample=lengths_per_sample
|
||||
)
|
||||
cache.mempool = torch.cuda.graphs.graph_pool_handle()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user