[FusedDense] Run black on fused_dense.py

This commit is contained in:
Tri Dao 2023-08-16 23:41:36 -07:00
parent 2286d7cea7
commit bcfa7c9751
3 changed files with 285 additions and 132 deletions

View File

@ -822,7 +822,7 @@ inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const in
// Putting this causal masking right after acc_s is *much* slower for some reason.
// TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
// (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
// But we still want to mask out elements not beyond actual_seqlen_k.
// But we still want to mask out elements beyond actual_seqlen_k.
if (m_block * kBlockM < (n_block + 1) * kBlockN
|| (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,

View File

@ -2,30 +2,33 @@
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
# We make it work with pytorch amp and with bfloat16.
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
from typing import Optional
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed import ProcessGroup
from torch.cuda.amp import custom_bwd, custom_fwd
from typing import Optional
# import fused_dense_cuda # from apex
import fused_dense_lib as fused_dense_cuda
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_fwd, sqrelu_bwd
from flash_attn.utils.distributed import all_gather_raw, reduce_scatter_raw, all_reduce_raw
from flash_attn.utils.distributed import reduce_scatter, all_reduce
import torch
import torch.nn as nn
import torch.nn.functional as F
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_bwd, sqrelu_fwd
from flash_attn.utils.distributed import (
all_gather_raw,
all_reduce,
all_reduce_raw,
reduce_scatter,
reduce_scatter_raw,
)
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.distributed import ProcessGroup
class FusedDenseFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight, bias, return_residual=False, process_group=None,
sequence_parallel=True):
def forward(
ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True
):
"""
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
@ -54,7 +57,7 @@ class FusedDenseFunc(torch.autograd.Function):
batch_dim = batch_shape.numel()
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
if min(batch_dim, n, *weight.shape) > 65535 * 32:
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
raise RuntimeError("fused_dense only supports matrix dims <= 2M")
output = F.linear(total_x, weight, bias)
if ctx.compute_weight_gradient:
ctx.save_for_backward(x, weight)
@ -67,7 +70,7 @@ class FusedDenseFunc(torch.autograd.Function):
def backward(ctx, grad_output, *args):
grad_output = grad_output.contiguous()
if ctx.return_residual:
grad_input, = args
(grad_input,) = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
sequence_parallel = ctx.sequence_parallel
@ -78,7 +81,7 @@ class FusedDenseFunc(torch.autograd.Function):
else:
total_x = x
else:
weight, = ctx.saved_tensors
(weight,) = ctx.saved_tensors
total_x = None
batch_shape = grad_output.shape[:-1]
batch_dim = batch_shape.numel()
@ -87,8 +90,9 @@ class FusedDenseFunc(torch.autograd.Function):
if not ctx.return_residual:
grad_input = F.linear(grad_output, weight.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_output, weight)
grad_input = torch.addmm(
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight
)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
@ -110,14 +114,21 @@ class FusedDenseFunc(torch.autograd.Function):
return grad_input, grad_weight, grad_bias, None, None, None
def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
return_residual: bool = False, process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True):
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
def fused_dense_func(
x: Tensor,
weight: Tensor,
bias: Optional[Tensor] = None,
return_residual: bool = False,
process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True,
):
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
x.dtype == torch.float32 and torch.is_autocast_enabled()
)
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
return FusedDenseFunc.apply(x, weight, bias, return_residual, process_group,
sequence_parallel)
return FusedDenseFunc.apply(
x, weight, bias, return_residual, process_group, sequence_parallel
)
else:
assert process_group is None
out = F.linear(x, weight, bias)
@ -125,9 +136,15 @@ def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
class FusedDense(nn.Linear):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
return_residual: bool = False, device=None, dtype=None) -> None:
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
return_residual: bool = False,
device=None,
dtype=None,
) -> None:
super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
self.return_residual = return_residual
@ -136,20 +153,34 @@ class FusedDense(nn.Linear):
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul.
"""
return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual,
process_group=process_group)
return fused_dense_func(
x,
self.weight,
self.bias,
return_residual=self.return_residual,
process_group=process_group,
)
class ColumnParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None:
def __init__(
self,
in_features: int,
out_features: int,
process_group: ProcessGroup,
bias: bool = True,
sequence_parallel=True,
device=None,
dtype=None,
) -> None:
world_size = torch.distributed.get_world_size(process_group)
if out_features % world_size != 0:
raise ValueError(f'out_features ({out_features}) must be divisible by '
f'world_size ({world_size})')
super().__init__(in_features, out_features // world_size, bias=bias,
device=device, dtype=dtype)
raise ValueError(
f"out_features ({out_features}) must be divisible by " f"world_size ({world_size})"
)
super().__init__(
in_features, out_features // world_size, bias=bias, device=device, dtype=dtype
)
self.process_group = process_group
self.sequence_parallel = sequence_parallel
@ -157,22 +188,40 @@ class ColumnParallelLinear(nn.Linear):
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
# we do an all_gather of x before doing the matmul.
# If not, then the input is already gathered.
return fused_dense_func(x, self.weight, self.bias, process_group=self.process_group,
sequence_parallel=self.sequence_parallel)
return fused_dense_func(
x,
self.weight,
self.bias,
process_group=self.process_group,
sequence_parallel=self.sequence_parallel,
)
class RowParallelLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, process_group: ProcessGroup,
bias: bool = True, sequence_parallel=True, device=None, dtype=None) -> None:
def __init__(
self,
in_features: int,
out_features: int,
process_group: ProcessGroup,
bias: bool = True,
sequence_parallel=True,
device=None,
dtype=None,
) -> None:
world_size = torch.distributed.get_world_size(process_group)
rank = torch.distributed.get_rank(process_group)
if in_features % world_size != 0:
raise ValueError(f'in_features ({in_features}) must be divisible by '
f'world_size ({world_size})')
raise ValueError(
f"in_features ({in_features}) must be divisible by " f"world_size ({world_size})"
)
# Only rank 0 will have bias
super().__init__(in_features // world_size, out_features, bias=bias and rank == 0,
device=device, dtype=dtype)
super().__init__(
in_features // world_size,
out_features,
bias=bias and rank == 0,
device=device,
dtype=dtype,
)
self.process_group = process_group
self.sequence_parallel = sequence_parallel
@ -187,12 +236,23 @@ class RowParallelLinear(nn.Linear):
class FusedMLPFunc(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, x, weight1, bias1, weight2, bias2, activation='gelu_approx', save_pre_act=True,
return_residual=False, checkpoint_lvl=0, heuristic=0, process_group=None,
sequence_parallel=True):
def forward(
ctx,
x,
weight1,
bias1,
weight2,
bias2,
activation="gelu_approx",
save_pre_act=True,
return_residual=False,
checkpoint_lvl=0,
heuristic=0,
process_group=None,
sequence_parallel=True,
):
"""
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
with sequence parallelism: we do an all_gather of x before doing the matmul.
@ -204,8 +264,8 @@ class FusedMLPFunc(torch.autograd.Function):
2: recompute pre_act and gelu_out / relu_out in the bwd
"""
assert -1 <= heuristic <= 4
assert activation in ['gelu_approx', 'relu', 'sqrelu']
if activation == 'sqrelu':
assert activation in ["gelu_approx", "relu", "sqrelu"]
if activation == "sqrelu":
assert heuristic == -1
if not save_pre_act:
checkpoint_lvl = 2
@ -241,26 +301,29 @@ class FusedMLPFunc(torch.autograd.Function):
batch_dim = batch_shape.numel()
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32:
raise RuntimeError('fused_dense only supports matrix dims <= 2M')
raise RuntimeError("fused_dense only supports matrix dims <= 2M")
if heuristic == -1:
pre_act = F.linear(total_x, weight1, bias1)
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else (sqrelu_fwd if activation == 'sqrelu' else F.relu))
with torch.jit.fuser('fuser2'):
activation_fn = (
partial(F.gelu, approximate="tanh")
if activation == "gelu_approx"
else (sqrelu_fwd if activation == "sqrelu" else F.relu)
)
with torch.jit.fuser("fuser2"):
output1 = activation_fn(pre_act)
# This is before adding bias1
# pre_act = F.linear(total_x.reshape(batch_dim, n), weight1)
# with torch.jit.fuser('fuser2'):
# output1 = bias_gelu(pre_act, bias1)
else:
is_gelu = activation == 'gelu_approx'
is_gelu = activation == "gelu_approx"
output1, *rest = fused_dense_cuda.linear_act_forward(
total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic
)
if save_pre_act:
pre_act = rest[0]
output2 = F.linear(output1, weight2, bias2)
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'):
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
# For RELU the pre_act is very small (just a bit-mask) so we just save it
ctx.save_for_backward(x, weight1, weight2, pre_act, output1)
elif checkpoint_lvl == 1:
@ -276,10 +339,13 @@ class FusedMLPFunc(torch.autograd.Function):
grad_output = grad_output.contiguous()
checkpoint_lvl = ctx.checkpoint_lvl
activation = ctx.activation
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else (sqrelu_fwd if activation == 'sqrelu' else F.relu))
activation_fn = (
partial(F.gelu, approximate="tanh")
if activation == "gelu_approx"
else (sqrelu_fwd if activation == "sqrelu" else F.relu)
)
if ctx.return_residual:
grad_input, = args
(grad_input,) = args
grad_input = grad_input.contiguous()
process_group = ctx.process_group
sequence_parallel = ctx.sequence_parallel
@ -291,24 +357,28 @@ class FusedMLPFunc(torch.autograd.Function):
if checkpoint_lvl in [0, 1]:
if process_group is not None and sequence_parallel:
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == 'relu'):
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
pre_act, output1 = rest
elif checkpoint_lvl == 1:
pre_act, = rest
with torch.jit.fuser('fuser2'):
(pre_act,) = rest
with torch.jit.fuser("fuser2"):
output1 = activation_fn(pre_act)
elif checkpoint_lvl == 2:
bias1, = rest
(bias1,) = rest
if process_group is not None and sequence_parallel:
total_x, _ = all_gather_raw(x, process_group)
if ctx.heuristic == -1:
pre_act = F.linear(total_x, weight1, bias1)
with torch.jit.fuser('fuser2'):
with torch.jit.fuser("fuser2"):
output1 = activation_fn(pre_act)
else:
output1, pre_act = fused_dense_cuda.linear_act_forward(
total_x.reshape(batch_dim, total_x.shape[-1]), weight1, bias1,
activation == 'gelu_approx', True, ctx.heuristic
total_x.reshape(batch_dim, total_x.shape[-1]),
weight1,
bias1,
activation == "gelu_approx",
True,
ctx.heuristic,
)
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
@ -324,15 +394,18 @@ class FusedMLPFunc(torch.autograd.Function):
if ctx.heuristic == -1:
# grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act)
grad_output1 = F.linear(grad_output, weight2.t())
activation_grad_fn = (gelu_bwd if activation == 'gelu_approx'
else (sqrelu_bwd if activation == 'sqrelu' else relu_bwd))
with torch.jit.fuser('fuser2'):
activation_grad_fn = (
gelu_bwd
if activation == "gelu_approx"
else (sqrelu_bwd if activation == "sqrelu" else relu_bwd)
)
with torch.jit.fuser("fuser2"):
grad_pre_act = activation_grad_fn(grad_output1, pre_act)
else:
# The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't
# just compute gelu/relu grad
grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad(
weight2, grad_output, pre_act, activation == 'gelu_approx', ctx.heuristic
weight2, grad_output, pre_act, activation == "gelu_approx", ctx.heuristic
)
if not ctx.needs_input_grad[2]:
grad_bias1 = None
@ -340,8 +413,9 @@ class FusedMLPFunc(torch.autograd.Function):
if not ctx.return_residual:
grad_input = F.linear(grad_pre_act, weight1.t())
else:
grad_input = torch.addmm(grad_input.reshape(batch_dim, grad_input.shape[-1]),
grad_pre_act, weight1)
grad_input = torch.addmm(
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1
)
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
if process_group is not None:
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
@ -353,8 +427,9 @@ class FusedMLPFunc(torch.autograd.Function):
if process_group is not None and sequence_parallel:
handle_x.wait()
grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
total_x.reshape(batch_dim, total_x.shape[-1]), grad_pre_act,
ctx.needs_input_grad[2]
total_x.reshape(batch_dim, total_x.shape[-1]),
grad_pre_act,
ctx.needs_input_grad[2],
)
else:
grad_weight1 = None
@ -363,50 +438,100 @@ class FusedMLPFunc(torch.autograd.Function):
if ctx.needs_input_grad[1]:
if process_group is not None and sequence_parallel:
handle_x.wait()
grad_weight1 = F.linear(grad_pre_act.t(),
total_x.reshape(batch_dim, total_x.shape[-1]).t())
grad_weight1 = F.linear(
grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()
)
else:
grad_weight1 = None
if process_group is not None and ctx.needs_input_grad[0]:
handle_grad_input.wait()
return (grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2,
None, None, None, None, None, None, None)
return (
grad_input,
grad_weight1,
grad_bias1,
grad_weight2,
grad_bias2,
None,
None,
None,
None,
None,
None,
None,
)
def fused_mlp_func(
x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None,
bias2: Optional[Tensor] = None, activation: str = 'gelu_approx',
save_pre_act: bool = True, return_residual: bool = False,
checkpoint_lvl: int = 0, heuristic: int = 0,
x: Tensor,
weight1: Tensor,
weight2: Tensor,
bias1: Optional[Tensor] = None,
bias2: Optional[Tensor] = None,
activation: str = "gelu_approx",
save_pre_act: bool = True,
return_residual: bool = False,
checkpoint_lvl: int = 0,
heuristic: int = 0,
process_group: Optional[ProcessGroup] = None,
sequence_parallel: bool = True
sequence_parallel: bool = True,
):
assert activation in ['gelu_approx', 'relu', 'sqrelu']
dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
assert activation in ["gelu_approx", "relu", "sqrelu"]
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
x.dtype == torch.float32 and torch.is_autocast_enabled()
)
# If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu)
dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == 'relu' else 8) == 0)
if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda)
and (bias2 is None or bias2.is_cuda) and dtype_eligible and dim_eligible):
dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == "relu" else 8) == 0)
if (
x.is_cuda
and weight1.is_cuda
and weight2.is_cuda
and (bias1 is None or bias1.is_cuda)
and (bias2 is None or bias2.is_cuda)
and dtype_eligible
and dim_eligible
):
return FusedMLPFunc.apply(
x, weight1, bias1, weight2, bias2, activation, save_pre_act, return_residual,
checkpoint_lvl, heuristic, process_group, sequence_parallel
x,
weight1,
bias1,
weight2,
bias2,
activation,
save_pre_act,
return_residual,
checkpoint_lvl,
heuristic,
process_group,
sequence_parallel,
)
else:
assert process_group is None
pre_act = F.linear(x, weight1, bias1)
activation_fn = (partial(F.gelu, approximate='tanh') if activation == 'gelu_approx'
else partial(F.relu, inplace=True))
activation_fn = (
partial(F.gelu, approximate="tanh")
if activation == "gelu_approx"
else partial(F.relu, inplace=True)
)
output1 = activation_fn(pre_act)
output2 = F.linear(output1, weight2, bias2)
return output2 if not return_residual else (output2, x)
class FusedMLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, bias1=True,
bias2=True, activation='gelu_approx', return_residual=False,
checkpoint_lvl=0, heuristic='auto', device=None, dtype=None):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
bias1=True,
bias2=True,
activation="gelu_approx",
return_residual=False,
checkpoint_lvl=0,
heuristic="auto",
device=None,
dtype=None,
):
"""
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
@ -429,36 +554,43 @@ class FusedMLP(nn.Module):
to fuse the backward of nn.Linear with the residual connection.
"""
assert checkpoint_lvl in [0, 1, 2]
assert activation in ['gelu_approx', 'relu', 'sqrelu']
factory_kwargs = {'device': device, 'dtype': dtype}
assert activation in ["gelu_approx", "relu", "sqrelu"]
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features * 4
self.activation = activation
self.return_residual = return_residual
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic if activation != 'sqrelu' else -1
self.heuristic = heuristic if activation != "sqrelu" else -1
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
def forward(self, x, process_group=None):
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
if self.heuristic == 'auto':
if self.activation == 'gelu_approx':
if torch.cuda.get_device_capability('cuda') == (9, 0):
if self.heuristic == "auto":
if self.activation == "gelu_approx":
if torch.cuda.get_device_capability("cuda") == (9, 0):
heuristic = -1
else:
cuda_ver = tuple(map(int, torch.version.cuda.split('.')))
cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
else:
heuristic = 0
else:
heuristic = self.heuristic
out = fused_mlp_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
activation=self.activation, save_pre_act=self.training,
return_residual=self.return_residual, checkpoint_lvl=self.checkpoint_lvl,
heuristic=heuristic, process_group=process_group
x,
self.fc1.weight,
self.fc2.weight,
self.fc1.bias,
self.fc2.bias,
activation=self.activation,
save_pre_act=self.training,
return_residual=self.return_residual,
checkpoint_lvl=self.checkpoint_lvl,
heuristic=heuristic,
process_group=process_group,
)
if self.return_residual:
out, x = out
@ -468,11 +600,21 @@ class FusedMLP(nn.Module):
class ParallelFusedMLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
activation='gelu_approx', process_group: ProcessGroup = None,
bias1=True, bias2=True, sequence_parallel=True, checkpoint_lvl=0, heuristic='auto',
device=None, dtype=None):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
activation="gelu_approx",
process_group: ProcessGroup = None,
bias1=True,
bias2=True,
sequence_parallel=True,
checkpoint_lvl=0,
heuristic="auto",
device=None,
dtype=None,
):
"""
process_group is required. We're doing Tensor Parallel with sequence parallelism:
we do an all_gather of x before doing the matmul, gelu, then matmul.
@ -490,9 +632,9 @@ class ParallelFusedMLP(nn.Module):
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
"""
assert checkpoint_lvl in [0, 1, 2]
assert activation in ['gelu_approx', 'relu', 'sqrelu']
assert activation in ["gelu_approx", "relu", "sqrelu"]
assert process_group is not None
factory_kwargs = {'device': device, 'dtype': dtype}
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features * 4
@ -500,28 +642,36 @@ class ParallelFusedMLP(nn.Module):
self.process_group = process_group
self.sequence_parallel = sequence_parallel
self.checkpoint_lvl = checkpoint_lvl
self.heuristic = heuristic if activation != 'sqrelu' else -1
self.fc1 = ColumnParallelLinear(in_features, hidden_features, process_group,
bias=bias1, **factory_kwargs)
self.fc2 = RowParallelLinear(hidden_features, out_features, process_group,
bias=bias2, **factory_kwargs)
self.heuristic = heuristic if activation != "sqrelu" else -1
self.fc1 = ColumnParallelLinear(
in_features, hidden_features, process_group, bias=bias1, **factory_kwargs
)
self.fc2 = RowParallelLinear(
hidden_features, out_features, process_group, bias=bias2, **factory_kwargs
)
def forward(self, x):
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
if self.heuristic == 'auto':
if self.activation == 'gelu_approx':
cuda_ver = tuple(map(int, torch.version.cuda.split('.')))
if self.heuristic == "auto":
if self.activation == "gelu_approx":
cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
else:
heuristic = 0
else:
heuristic = self.heuristic
out = fused_mlp_func(
x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
activation=self.activation, save_pre_act=self.training,
checkpoint_lvl=self.checkpoint_lvl, heuristic=heuristic,
x,
self.fc1.weight,
self.fc2.weight,
self.fc1.bias,
self.fc2.bias,
activation=self.activation,
save_pre_act=self.training,
checkpoint_lvl=self.checkpoint_lvl,
heuristic=heuristic,
process_group=self.process_group,
sequence_parallel=self.sequence_parallel
sequence_parallel=self.sequence_parallel,
)
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
return reduce_fn(out, self.process_group)

3
pyproject.toml Normal file
View File

@ -0,0 +1,3 @@
[tool.black]
line-length = 100
target-version = ['py38']