[MHA] Run black on mha.py

This commit is contained in:
Tri Dao 2023-08-16 23:47:13 -07:00
parent cb0daccc41
commit bec5b3d374

View File

@ -1,4 +1,4 @@
# Copyright (c) 2022, Tri Dao.
# Copyright (c) 2023, Tri Dao.
import math
from functools import partial
@ -6,18 +6,21 @@ from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
try:
from flash_attn import flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
from flash_attn import (
flash_attn_kvpacked_func,
flash_attn_qkvpacked_func,
flash_attn_varlen_kvpacked_func,
flash_attn_varlen_qkvpacked_func,
)
except ImportError:
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
try:
from flash_attn.ops.fused_dense import FusedDense, ColumnParallelLinear, RowParallelLinear
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
except ImportError:
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
@ -42,10 +45,11 @@ class FlashSelfAttention(nn.Module):
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
assert flash_attn_varlen_qkvpacked_func is not None, 'FlashAttention is not installed'
assert flash_attn_qkvpacked_func is not None, 'FlashAttention is not installed'
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
@ -76,12 +80,20 @@ class FlashSelfAttention(nn.Module):
assert max_seqlen is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_seqlen, self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
qkv,
cu_seqlens,
max_seqlen,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
else:
return flash_attn_qkvpacked_func(qkv, self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal)
return flash_attn_qkvpacked_func(
qkv,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale,
causal=causal,
)
class FlashCrossAttention(nn.Module):
@ -94,16 +106,25 @@ class FlashCrossAttention(nn.Module):
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
assert flash_attn_varlen_kvpacked_func is not None, 'FlashAttention is not installed'
assert flash_attn_kvpacked_func is not None, 'FlashAttention is not installed'
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
self.causal = causal
self.softmax_scale = softmax_scale
self.drop = nn.Dropout(attention_dropout)
def forward(self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None,
cu_seqlens_k=None, max_seqlen_k=None):
def forward(
self,
q,
kv,
causal=None,
cu_seqlens=None,
max_seqlen=None,
cu_seqlens_k=None,
max_seqlen_k=None,
):
"""Implements the multihead softmax attention.
Arguments
---------
@ -130,16 +151,27 @@ class FlashCrossAttention(nn.Module):
assert max_seqlen_k is not None
assert isinstance(max_seqlen, int)
return flash_attn_varlen_kvpacked_func(
q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k,
q,
kv,
cu_seqlens,
cu_seqlens_k,
max_seqlen,
max_seqlen_k,
self.drop.p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
softmax_scale=self.softmax_scale,
causal=causal,
)
else:
batch_size, seqlen_q = q.shape[0], q.shape[1]
seqlen_k = kv.shape[1]
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
return flash_attn_kvpacked_func(q, kv, self.drop.p if self.training else 0.0,
causal=causal, softmax_scale=self.softmax_scale)
return flash_attn_kvpacked_func(
q,
kv,
self.drop.p if self.training else 0.0,
causal=causal,
softmax_scale=self.softmax_scale,
)
class SelfAttention(nn.Module):
@ -152,6 +184,7 @@ class SelfAttention(nn.Module):
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
@ -171,22 +204,25 @@ class SelfAttention(nn.Module):
causal = self.causal if causal is None else causal
q, k, v = qkv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
device=scores.device)
padding_mask = torch.full(
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
@ -200,6 +236,7 @@ class CrossAttention(nn.Module):
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
super().__init__()
self.causal = causal
@ -224,43 +261,48 @@ class CrossAttention(nn.Module):
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
k, v = kv.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
if key_padding_mask is not None:
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
device=scores.device)
padding_mask = torch.full(
(batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
)
padding_mask.masked_fill_(key_padding_mask, 0.0)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
device=scores.device), 1)
causal_mask = torch.triu(
torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1
)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
attention_drop = self.drop(attention)
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
return output
class LinearResidual(nn.Linear):
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense.
"""
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return super().forward(input), input
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
"""
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
if layer_idx not in inference_params.key_value_memory_dict:
kv_cache = torch.empty(
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
num_heads, head_dim, dtype=kv.dtype, device=kv.device
inference_params.max_batch_size,
inference_params.max_sequence_len,
2,
num_heads,
head_dim,
dtype=kv.dtype,
device=kv.device,
)
inference_params.key_value_memory_dict[layer_idx] = kv_cache
else:
@ -292,22 +334,30 @@ def _update_kv_cache(kv, inference_params, layer_idx):
packsize = 4 if kv.dtype == torch.float32 else 8
if kv_cache is not None:
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
k_cache = rearrange(kv_cache[:, :, 0], 'b s h (d packsize) -> b h d s packsize',
packsize=packsize).contiguous()
v_cache = rearrange(kv_cache[:, :, 1], 'b s h d -> b h s d').contiguous()
k_cache = rearrange(
kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
).contiguous()
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
else:
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
kv[:, :, 0], 'b s h (d packsize) -> b h d s packsize', packsize=packsize
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
)
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(
kv[:, :, 1], 'b s h d -> b h s d'
kv[:, :, 1], "b s h d -> b h s d"
)
return kv
def _apply_rotary_single_query_attention(qkv, inference_params, layer_idx, rotary_emb_dim,
rotary_emb_base, kv=None, rotary_emb_interleaved=False):
def _apply_rotary_single_query_attention(
qkv,
inference_params,
layer_idx,
rotary_emb_dim,
rotary_emb_base,
kv=None,
rotary_emb_interleaved=False,
):
"""
qkv: (batch_size, 1, 3, nheads, head_dim) if kv is None else it's just
q of shape (batch_size, 1, nheads, head_dim)
@ -316,17 +366,22 @@ def _apply_rotary_single_query_attention(qkv, inference_params, layer_idx, rotar
assert inference_params.fused_ft_kernel
assert ft_attention is not None
if kv is None:
q, k, v = rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1)
q, k, v = rearrange(qkv, "b 1 three h d -> b three h d").unbind(dim=1)
else:
q = rearrange(qkv, 'b 1 h d -> b h d')
k, v = rearrange(kv, 'b 1 two h d -> b two h d').unbind(dim=1)
q = rearrange(qkv, "b 1 h d -> b h d")
k, v = rearrange(kv, "b 1 two h d -> b two h d").unbind(dim=1)
batch_start = inference_params.batch_size_offset
batch_end = batch_start + q.shape[0]
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
lengths_per_sample = (inference_params.lengths_per_sample[batch_start:batch_end]
if inference_params.lengths_per_sample is not None else None)
lengths_per_sample = (
inference_params.lengths_per_sample[batch_start:batch_end]
if inference_params.lengths_per_sample is not None
else None
)
context = ft_attention.single_query_attention(
q, k, v,
q,
k,
v,
k_cache[batch_start:batch_end],
v_cache[batch_start:batch_end],
lengths_per_sample,
@ -334,29 +389,47 @@ def _apply_rotary_single_query_attention(qkv, inference_params, layer_idx, rotar
None, # rotary_sin_
None, # nnz_head_idx
inference_params.sequence_len_offset,
rotary_emb_dim, rotary_emb_base,
not rotary_emb_interleaved # neox_rotary_style
rotary_emb_dim,
rotary_emb_base,
not rotary_emb_interleaved, # neox_rotary_style
)
return rearrange(context, 'b h d -> b 1 h d')
return rearrange(context, "b h d -> b 1 h d")
class MHA(nn.Module):
"""Multi-head self-attention and cross-attention
"""
"""Multi-head self-attention and cross-attention"""
def __init__(self, embed_dim, num_heads, num_heads_kv=None, cross_attn=False,
qkv_proj_bias=True, out_proj_bias=True,
dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False,
rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
rotary_emb_interleaved=False, fused_bias_fc=False, use_flash_attn=False,
return_residual=False, checkpointing=False, device=None, dtype=None) -> None:
def __init__(
self,
embed_dim,
num_heads,
num_heads_kv=None,
cross_attn=False,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
dwconv=False,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
fused_bias_fc=False,
use_flash_attn=False,
return_residual=False,
checkpointing=False,
device=None,
dtype=None,
) -> None:
"""
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
return_residual: whether to return the input x along with the output. This is for
performance reason: for post-norm architecture, returning the input allows us
to fuse the backward of nn.Linear with the residual connection.
"""
factory_kwargs = {'device': device, 'dtype': dtype}
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.cross_attn = cross_attn
@ -370,24 +443,31 @@ class MHA(nn.Module):
self.num_heads = num_heads
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
assert self.num_heads % self.num_heads_kv == 0, "num_heads must be divisible by num_heads_kv"
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
kv_dim = 2 * self.head_dim * self.num_heads_kv
if self.rotary_emb_dim > 0:
assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet'
assert RotaryEmbedding is not None, 'rotary_emb is not installed'
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved, device=device)
assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if fused_bias_fc and FusedDense is None:
raise ImportError('fused_dense is not installed')
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
linear_resid_cls = (LinearResidual if not fused_bias_fc
else partial(FusedDense, return_residual=True))
linear_resid_cls = (
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
)
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
@ -398,40 +478,57 @@ class MHA(nn.Module):
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
if self.dwconv:
if self.num_heads_kv == self.num_heads:
self.dwconv_qkv = nn.Conv1d(qkv_dim, qkv_dim, kernel_size=3, padding=2,
groups=qkv_dim)
self.dwconv_qkv = nn.Conv1d(
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
)
else:
self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2,
groups=embed_dim)
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2,
groups=kv_dim)
self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
attention_dropout=dropout)
self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
attention_dropout=dropout)
self.dwconv_q = nn.Conv1d(
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
)
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
self.inner_attn = inner_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
if not fused_ft_kernel:
return torch.empty(batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim,
dtype=dtype, device=device)
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv,
self.head_dim,
dtype=dtype,
device=device,
)
else:
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if dtype == torch.float32 else 8
assert self.head_dim % packsize == 0
k_cache = torch.empty(batch_size, self.num_heads_kv, self.head_dim // packsize,
max_seqlen, packsize, dtype=dtype, device=device)
v_cache = torch.empty(batch_size, self.num_heads_kv, max_seqlen, self.head_dim,
dtype=dtype, device=device)
k_cache = torch.empty(
batch_size,
self.num_heads_kv,
self.head_dim // packsize,
max_seqlen,
packsize,
dtype=dtype,
device=device,
)
v_cache = torch.empty(
batch_size, self.num_heads_kv, max_seqlen, self.head_dim, dtype=dtype, device=device
)
return k_cache, v_cache
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
"""
assert not self.dwconv, 'Generation does not support dwconv yet'
assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert not self.dwconv, "Generation does not support dwconv yet"
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_single_query_attention(self, qkv, inference_params, kv=None):
@ -442,12 +539,28 @@ class MHA(nn.Module):
"""
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
return _apply_rotary_single_query_attention(
qkv, inference_params, self.layer_idx, self.rotary_emb_dim, rotary_emb_base, kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
qkv,
inference_params,
self.layer_idx,
self.rotary_emb_dim,
rotary_emb_base,
kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved
if self.rotary_emb_dim > 0
else False,
)
def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None,
mixer_subset=None, inference_params=None, **kwargs):
def forward(
self,
x,
x_kv=None,
key_padding_mask=None,
cu_seqlens=None,
max_seqlen=None,
mixer_subset=None,
inference_params=None,
**kwargs,
):
"""
Arguments:
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
@ -481,8 +594,11 @@ class MHA(nn.Module):
assert cu_seqlens is None and max_seqlen is None
assert not self.dwconv
kwargs = ({'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen, **kwargs}
if self.use_flash_attn else {'key_padding_mask': key_padding_mask, **kwargs})
kwargs = (
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
if self.use_flash_attn
else {"key_padding_mask": key_padding_mask, **kwargs}
)
seqlen_offset = 0 if inference_params is None else inference_params.sequence_len_offset
if not self.cross_attn and self.num_heads_kv == self.num_heads:
assert x_kv is None and mixer_subset is None
@ -491,19 +607,22 @@ class MHA(nn.Module):
else:
qkv, x = self.Wqkv(x)
if self.dwconv:
qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2],
'b d s -> b s d').contiguous()
qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim)
if (inference_params is None or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel):
qkv = rearrange(
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_attn(qkv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv,
**kwargs)
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
else:
q = qkv[:, :, 0]
kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
@ -530,25 +649,31 @@ class MHA(nn.Module):
qkv = self.Wqkv(x)
else:
qkv, x = self.Wqkv(x)
q = qkv[..., :self.num_heads * self.head_dim]
kv = qkv[..., self.num_heads * self.head_dim:]
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
kv = rearrange(kv, '... (two hkv d) -> ... two hkv d', two=2, d=self.head_dim)
q = qkv[..., : self.num_heads * self.head_dim]
kv = qkv[..., self.num_heads * self.head_dim :]
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if self.dwconv:
q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2],
'b d s -> b s d').contiguous()
kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2],
'b d s -> b s d').contiguous()
if (inference_params is None or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel):
q = rearrange(
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
kv = rearrange(
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
).contiguous()
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(q, kv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(self.inner_cross_attn, q, kv,
**kwargs)
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)
else:
kv = self._update_kv_cache(kv, inference_params)
# If we're processing the prompt, causal=None (use self.causal).
@ -557,21 +682,36 @@ class MHA(nn.Module):
context = self.inner_cross_attn(q, kv, causal=causal)
else:
context = self._apply_rotary_single_query_attention(q, inference_params, kv=kv)
out = self.out_proj(rearrange(context, '... h d -> ... (h d)'))
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
return out if not self.return_residual else (out, x)
class ParallelMHA(nn.Module):
"""Multi-head self-attention and cross-attention
"""
"""Multi-head self-attention and cross-attention"""
def __init__(self, embed_dim, num_heads, process_group, num_heads_kv=None,
qkv_proj_bias=True, out_proj_bias=True,
dropout=0.0, softmax_scale=None, causal=False, layer_idx=None,
rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
rotary_emb_interleaved=False, use_flash_attn=False, checkpointing=False,
sequence_parallel=True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
def __init__(
self,
embed_dim,
num_heads,
process_group,
num_heads_kv=None,
qkv_proj_bias=True,
out_proj_bias=True,
dropout=0.0,
softmax_scale=None,
causal=False,
layer_idx=None,
rotary_emb_dim=0,
rotary_emb_base=10000.0,
rotary_emb_scale_base=None,
rotary_emb_interleaved=False,
use_flash_attn=False,
checkpointing=False,
sequence_parallel=True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.causal = causal
@ -586,55 +726,93 @@ class ParallelMHA(nn.Module):
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
self.num_heads_per_rank = num_heads // self.world_size
self.num_heads_kv_per_rank = self.num_heads_kv // self.world_size
assert self.num_heads % self.num_heads_kv == 0, "num_heads must be divisible by num_heads_kv"
assert (
self.num_heads % self.num_heads_kv == 0
), "num_heads must be divisible by num_heads_kv"
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
assert self.num_heads_kv % self.world_size == 0, "num_heads_kv must be divisible by world_size"
assert (
self.num_heads_kv % self.world_size == 0
), "num_heads_kv must be divisible by world_size"
self.head_dim = self.embed_dim // num_heads
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
kv_dim = 2 * self.head_dim * self.num_heads_kv
if self.rotary_emb_dim > 0:
assert RotaryEmbedding is not None, 'rotary_emb is not installed'
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved, device=device)
assert RotaryEmbedding is not None, "rotary_emb is not installed"
self.rotary_emb = RotaryEmbedding(
self.rotary_emb_dim,
base=rotary_emb_base,
scale_base=rotary_emb_scale_base,
interleaved=rotary_emb_interleaved,
device=device,
)
if ColumnParallelLinear is None or RowParallelLinear is None:
raise ImportError('fused_dense is not installed')
self.Wqkv = ColumnParallelLinear(embed_dim, qkv_dim, process_group,
bias=qkv_proj_bias,
sequence_parallel=sequence_parallel, **factory_kwargs)
raise ImportError("fused_dense is not installed")
self.Wqkv = ColumnParallelLinear(
embed_dim,
qkv_dim,
process_group,
bias=qkv_proj_bias,
sequence_parallel=sequence_parallel,
**factory_kwargs,
)
inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
attention_dropout=dropout)
self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
attention_dropout=dropout)
self.out_proj = RowParallelLinear(embed_dim, embed_dim, process_group,
bias=out_proj_bias,
sequence_parallel=sequence_parallel, **factory_kwargs)
self.inner_attn = inner_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.inner_cross_attn = inner_cross_attn_cls(
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
)
self.out_proj = RowParallelLinear(
embed_dim,
embed_dim,
process_group,
bias=out_proj_bias,
sequence_parallel=sequence_parallel,
**factory_kwargs,
)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True):
dtype = self.out_proj.weight.dtype if dtype is None else dtype
device = self.out_proj.weight.device
if not fused_ft_kernel:
return torch.empty(batch_size, max_seqlen, 2, self.num_heads_kv_per_rank,
self.head_dim, dtype=dtype, device=device)
return torch.empty(
batch_size,
max_seqlen,
2,
self.num_heads_kv_per_rank,
self.head_dim,
dtype=dtype,
device=device,
)
else:
assert dtype in [torch.float16, torch.bfloat16, torch.float32]
packsize = 4 if dtype == torch.float32 else 8
assert self.head_dim % packsize == 0
k_cache = torch.empty(batch_size, self.num_heads_kv_per_rank,
self.head_dim // packsize,
max_seqlen, packsize, dtype=dtype, device=device)
v_cache = torch.empty(batch_size, self.num_heads_kv_per_rank, max_seqlen,
self.head_dim, dtype=dtype, device=device)
k_cache = torch.empty(
batch_size,
self.num_heads_kv_per_rank,
self.head_dim // packsize,
max_seqlen,
packsize,
dtype=dtype,
device=device,
)
v_cache = torch.empty(
batch_size,
self.num_heads_kv_per_rank,
max_seqlen,
self.head_dim,
dtype=dtype,
device=device,
)
return k_cache, v_cache
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
"""
assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_single_query_attention(self, qkv, inference_params, kv=None):
@ -645,8 +823,15 @@ class ParallelMHA(nn.Module):
"""
rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
return _apply_rotary_single_query_attention(
qkv, inference_params, self.layer_idx, self.rotary_emb_dim, rotary_emb_base, kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
qkv,
inference_params,
self.layer_idx,
self.rotary_emb_dim,
rotary_emb_base,
kv=kv,
rotary_emb_interleaved=self.rotary_emb.interleaved
if self.rotary_emb_dim > 0
else False,
)
def forward(self, x, seqlen=None, inference_params=None, **kwargs):
@ -662,9 +847,12 @@ class ParallelMHA(nn.Module):
qkv = rearrange(qkv, "(b s) ... -> b s ...", s=seqlen)
seqlen_offset = 0 if inference_params is None else inference_params.sequence_len_offset
if self.num_heads_kv == self.num_heads:
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, d=self.head_dim)
if (inference_params is None or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel):
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, d=self.head_dim)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
qkv = self.rotary_emb(qkv, seqlen_offset=seqlen_offset)
if inference_params is None:
@ -682,20 +870,31 @@ class ParallelMHA(nn.Module):
else:
context = self._apply_rotary_single_query_attention(qkv, inference_params)
else:
q = rearrange(qkv[..., :self.num_heads_per_rank * self.head_dim],
"... (h d) -> ... h d", d=self.head_dim)
kv = rearrange(qkv[..., self.num_heads_per_rank * self.head_dim:],
"... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
if (inference_params is None or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel):
q = rearrange(
qkv[..., : self.num_heads_per_rank * self.head_dim],
"... (h d) -> ... h d",
d=self.head_dim,
)
kv = rearrange(
qkv[..., self.num_heads_per_rank * self.head_dim :],
"... (two hkv d) -> ... two hkv d",
two=2,
d=self.head_dim,
)
if (
inference_params is None
or inference_params.sequence_len_offset == 0
or not inference_params.fused_ft_kernel
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(q, kv, seqlen_offset=seqlen_offset)
if inference_params is None:
if not self.checkpointing:
context = self.inner_cross_attn(q, kv, **kwargs)
else:
context = torch.utils.checkpoint.checkpoint(self.inner_cross_attn, q, kv,
**kwargs)
context = torch.utils.checkpoint.checkpoint(
self.inner_cross_attn, q, kv, **kwargs
)
else:
kv = self._update_kv_cache(kv, inference_params)
# If we're processing the prompt, causal=None (use self.causal).
@ -704,8 +903,8 @@ class ParallelMHA(nn.Module):
context = self.inner_cross_attn(q, kv, causal=causal)
else:
context = self._apply_rotary_single_query_attention(q, inference_params, kv=kv)
context = rearrange(context, 'b s h d -> b s (h d)')
context = rearrange(context, "b s h d -> b s (h d)")
if seqlen is not None:
context = rearrange(context, 'b s d -> (b s) d')
context = rearrange(context, "b s d -> (b s) d")
out = self.out_proj(context)
return out