[GPT] Move more tests to test_gpt.py
This commit is contained in:
parent
a2974e850a
commit
c000c3a2c0
@ -256,3 +256,82 @@ def test_gpt2_generation(model_name, rotary, optimized, fused_ft_kernel):
|
||||
).abs().max().item() < 3 * (
|
||||
torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)
|
||||
).abs().max().item()
|
||||
|
||||
|
||||
def get_logits(model, input_ids, max_length, teacher_outputs=None, **kwargs):
|
||||
out = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
fused_ft_kernel=True,
|
||||
teacher_outputs=teacher_outputs,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
**kwargs,
|
||||
)
|
||||
return torch.stack(out.scores, dim=1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seqlen,maxlen", [(10, 20), (30, 150), (3000, 3400), (14000, 15000)])
|
||||
# @pytest.mark.parametrize('seqlen,maxlen', [(10, 20)])
|
||||
@pytest.mark.parametrize("rotary", [None, "interleaved", "block"])
|
||||
# @pytest.mark.parametrize('rotary', [None])
|
||||
@pytest.mark.parametrize("model_name", ["gpt2"])
|
||||
def test_gpt2_generation_cg(model_name, rotary, seqlen, maxlen):
|
||||
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph."""
|
||||
dtype = torch.float16
|
||||
device = "cuda"
|
||||
rtol, atol = 3e-3, 3e-1
|
||||
config = GPT2Config.from_pretrained(model_name)
|
||||
config.n_positions = 16 * 1024
|
||||
assert seqlen <= maxlen <= config.n_positions
|
||||
if rotary is not None:
|
||||
config.n_positions = 0
|
||||
config.rotary_emb_dim = 32
|
||||
config.rotary_emb_interleaved = rotary == "interleaved"
|
||||
config.residual_in_fp32 = True
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = True
|
||||
config.fused_dropout_add_ln = True
|
||||
|
||||
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
|
||||
# Try increasing batch size and seqlen, then decrease them to see if it's still correct
|
||||
batch_size = 3
|
||||
maxlen += 30
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
|
||||
batch_size = 2
|
||||
maxlen -= 35
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
|
||||
@ -1,89 +0,0 @@
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from einops import rearrange
|
||||
from flash_attn.models.gpt import GPTLMHeadModel
|
||||
from flash_attn.utils.generation import update_graph_cache
|
||||
from transformers import GPT2Config
|
||||
|
||||
|
||||
def get_logits(model, input_ids, max_length, teacher_outputs=None, **kwargs):
|
||||
out = model.generate(
|
||||
input_ids=input_ids,
|
||||
max_length=max_length,
|
||||
fused_ft_kernel=True,
|
||||
teacher_outputs=teacher_outputs,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
timing=True,
|
||||
**kwargs,
|
||||
)
|
||||
return torch.stack(out.scores, dim=1)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seqlen,maxlen", [(10, 20), (30, 150), (3000, 3400), (14000, 15000)])
|
||||
# @pytest.mark.parametrize('seqlen,maxlen', [(10, 20)])
|
||||
@pytest.mark.parametrize("rotary", [None, "interleaved", "block"])
|
||||
# @pytest.mark.parametrize('rotary', [None])
|
||||
@pytest.mark.parametrize("model_name", ["gpt2"])
|
||||
def test_greedy_decode_gpt2_cg(model_name, rotary, seqlen, maxlen):
|
||||
"""Check that decoding with CUDA graph is the same as decoding without CUDA graph."""
|
||||
dtype = torch.float16
|
||||
device = "cuda"
|
||||
rtol, atol = 3e-3, 3e-1
|
||||
config = GPT2Config.from_pretrained(model_name)
|
||||
config.n_positions = 16 * 1024
|
||||
assert seqlen <= maxlen <= config.n_positions
|
||||
if rotary is not None:
|
||||
config.n_positions = 0
|
||||
config.rotary_emb_dim = 32
|
||||
config.rotary_emb_interleaved = rotary == "interleaved"
|
||||
config.residual_in_fp32 = True
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = True
|
||||
config.fused_dropout_add_ln = True
|
||||
|
||||
model = GPTLMHeadModel(config, device=device, dtype=dtype)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
|
||||
# Try increasing batch size and seqlen, then decrease them to see if it's still correct
|
||||
batch_size = 3
|
||||
maxlen += 30
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
|
||||
batch_size = 2
|
||||
maxlen -= 35
|
||||
input_ids = torch.randint(
|
||||
0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
|
||||
)
|
||||
teacher_outputs = torch.randint(
|
||||
0, config.vocab_size, (batch_size, maxlen), dtype=torch.long, device=device
|
||||
)
|
||||
logits = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs)
|
||||
logits_cg = get_logits(model, input_ids, maxlen, teacher_outputs=teacher_outputs, cg=True)
|
||||
assert torch.equal(logits, logits_cg)
|
||||
Loading…
Reference in New Issue
Block a user