[GPT] Implement Falcon
This commit is contained in:
parent
684196b8c5
commit
d38357dd2f
122
flash_attn/models/falcon.py
Normal file
122
flash_attn/models/falcon.py
Normal file
@ -0,0 +1,122 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
|
||||
import math
|
||||
import re
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from transformers import GPT2Config, FalconConfig
|
||||
|
||||
|
||||
def remap_state_dict_hf_falcon(state_dict, config):
|
||||
def key_mapping_layers(key):
|
||||
return re.sub(r'^transformer.h.', 'transformer.layers.', key)
|
||||
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
||||
# Word embedding
|
||||
def key_mapping_emb(key):
|
||||
return re.sub(r'^transformer.word_embeddings.', 'transformer.embeddings.word_embeddings.', key)
|
||||
state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
|
||||
word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight')
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
|
||||
vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||||
state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
|
||||
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
|
||||
)
|
||||
if getattr(config, 'tie_word_embeddings'):
|
||||
state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
|
||||
else:
|
||||
output_embeddings = state_dict.pop('lm_head.weight')
|
||||
# It's possible that vocab_size is padded to be a multiple of 8, for example.
|
||||
state_dict['lm_head.weight'] = F.pad(
|
||||
output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
|
||||
)
|
||||
output_embeddings_bias = state_dict.pop('lm_head.bias')
|
||||
state_dict['lm_head.bias'] = F.pad(
|
||||
output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
|
||||
)
|
||||
|
||||
# LayerNorm
|
||||
def key_mapping_ln(key):
|
||||
key = re.sub(r'^transformer.layers.(\d+).input_layernorm.',
|
||||
r'transformer.layers.\1.norm1.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.',
|
||||
r'transformer.layers.\1.norm2.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).ln_attn.', r'transformer.layers.\1.norm1.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).ln_mlp.', r'transformer.layers.\1.norm2.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
||||
|
||||
# MLP
|
||||
def key_mapping_mlp(key):
|
||||
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.',
|
||||
r'transformer.layers.\1.mlp.fc1.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.',
|
||||
r'transformer.layers.\1.mlp.fc2.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
||||
|
||||
def key_mapping_attn(key):
|
||||
key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.',
|
||||
r'transformer.layers.\1.mixer.Wqkv.', key)
|
||||
key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.',
|
||||
r'transformer.layers.\1.mixer.out_proj.', key)
|
||||
return key
|
||||
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
||||
n_head = config.n_head
|
||||
n_head_kv = getattr(config, "n_head_kv", 1)
|
||||
headdim = config.hidden_size // n_head
|
||||
for l in range(config.n_layer):
|
||||
# The weights are stored in a different layout compared to our implementation
|
||||
Wqkv = rearrange(state_dict.pop(f'transformer.layers.{l}.mixer.Wqkv.weight'),
|
||||
"(group ratio headdim) ... -> group ratio headdim ...",
|
||||
ratio=n_head // n_head_kv + 2, headdim=headdim)
|
||||
Wq = rearrange(Wqkv[:, :-2], "group ratio headdim ... -> (group ratio headdim) ...")
|
||||
Wk = rearrange(Wqkv[:, [-2]], "group ratio headdim ... -> (group ratio headdim) ...")
|
||||
Wv = rearrange(Wqkv[:, [-1]], "group ratio headdim ... -> (group ratio headdim) ...")
|
||||
state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat([Wq, Wk, Wv], dim=0)
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
def falcon_config_to_gpt2_config(falcon_config: FalconConfig) -> GPT2Config:
|
||||
# The 40b config uses "n_head_kv" instead of "num_kv_heads"
|
||||
n_head_kv = getattr(falcon_config, "n_head_kv",
|
||||
1 if getattr(falcon_config, "multi_query", False)
|
||||
else falcon_config.n_head)
|
||||
# HACK: the 40b config has 2 LN per layer instead of 1, but that's not reflected in the config.
|
||||
# So we have to infer it from the number of heads in the key/value block
|
||||
parallel_block_tied_norm = n_head_kv == 1
|
||||
return GPT2Config(
|
||||
vocab_size=falcon_config.vocab_size,
|
||||
n_positions=0, # No absolute position embedding
|
||||
n_embd=falcon_config.hidden_size,
|
||||
n_layer=falcon_config.n_layer,
|
||||
n_head=falcon_config.n_head,
|
||||
n_inner=falcon_config.hidden_size * 4,
|
||||
activation_function="gelu",
|
||||
resid_pdrop=falcon_config.hidden_dropout,
|
||||
embd_pdrop=0.0, # There doesn't seem to be any embedding dropout
|
||||
attn_pdrop=falcon_config.attention_dropout,
|
||||
layer_norm_epsilon=falcon_config.layer_norm_epsilon,
|
||||
initializer_range=falcon_config.initializer_range,
|
||||
bos_token_id=falcon_config.bos_token_id,
|
||||
eos_token_id=falcon_config.eos_token_id,
|
||||
# These are new arguments not in the original GPT2Config
|
||||
parallel_block=falcon_config.parallel_attn,
|
||||
n_head_kv=n_head_kv,
|
||||
parallel_block_tied_norm=parallel_block_tied_norm,
|
||||
rotary_emb_fraction=1.0,
|
||||
rotary_emb_interleaved=False,
|
||||
tie_word_embeddings=True,
|
||||
qkv_proj_bias=falcon_config.bias,
|
||||
out_proj_bias=falcon_config.bias,
|
||||
mlp_fc1_bias=falcon_config.bias,
|
||||
mlp_fc2_bias=falcon_config.bias,
|
||||
lm_head_bias=False,
|
||||
)
|
||||
@ -27,6 +27,7 @@ from flash_attn.utils.generation import GenerationMixin
|
||||
from flash_attn.models.opt import remap_state_dict_hf_opt
|
||||
from flash_attn.models.gptj import remap_state_dict_hf_gptj
|
||||
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
|
||||
from flash_attn.models.falcon import remap_state_dict_hf_falcon
|
||||
|
||||
try:
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear
|
||||
@ -241,6 +242,8 @@ class GPTPreTrainedModel(nn.Module):
|
||||
state_dict = remap_state_dict_hf_gptj(state_dict, config)
|
||||
elif model_name.startswith('EleutherAI/gpt-neox-'):
|
||||
state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
|
||||
elif model_name.startswith('tiiuae/falcon-'):
|
||||
state_dict = remap_state_dict_hf_falcon(state_dict, config)
|
||||
else:
|
||||
raise NotImplementedError(f'Model {model_name} not supported')
|
||||
if world_size > 1:
|
||||
|
||||
370
tests/models/test_falcon.py
Normal file
370
tests/models/test_falcon.py
Normal file
@ -0,0 +1,370 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
current_dir = Path(__file__).parent.absolute()
|
||||
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from einops import rearrange
|
||||
|
||||
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp
|
||||
from flash_attn.models.falcon import remap_state_dict_hf_falcon, falcon_config_to_gpt2_config
|
||||
from flash_attn.utils.distributed import all_gather_raw
|
||||
from flash_attn.utils.pretrained import state_dict_from_pretrained
|
||||
from flash_attn.utils.generation import update_graph_cache
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_name', ["tiiuae/falcon-7b", "tiiuae/falcon-40b"])
|
||||
def test_falcon_state_dict(model_name):
|
||||
config = falcon_config_to_gpt2_config(AutoConfig.from_pretrained(model_name,
|
||||
trust_remote_code=True))
|
||||
pretrained_state_dict = remap_state_dict_hf_falcon(state_dict_from_pretrained(model_name), config)
|
||||
model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow
|
||||
state_dict = model.state_dict()
|
||||
assert state_dict.keys() == pretrained_state_dict.keys()
|
||||
for k in state_dict.keys():
|
||||
assert state_dict[k].shape == pretrained_state_dict[k].shape
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_name', ["tiiuae/falcon-7b"])
|
||||
def test_falcon_optimized(model_name):
|
||||
"""Check that our implementation (with all optimizations enabled) matches the
|
||||
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
||||
forward pass in fp16, when compared to the HF forward pass in fp32.
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = 'cuda'
|
||||
config = falcon_config_to_gpt2_config(AutoConfig.from_pretrained(model_name,
|
||||
trust_remote_code=True))
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
|
||||
config.fused_dropout_add_ln = True
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
|
||||
device=device)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
logits = model(input_ids).logits
|
||||
del model
|
||||
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map={"": device}, trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device)
|
||||
logits_ref = model_ref(input_ids).logits.to(device=device)
|
||||
del model_ref
|
||||
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
|
||||
)
|
||||
model_hf.eval()
|
||||
out_hf = model_hf.transformer(input_ids).last_hidden_state
|
||||
logits_hf = model_hf(input_ids).logits
|
||||
del model_hf
|
||||
|
||||
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
|
||||
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
|
||||
assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
|
||||
|
||||
print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
|
||||
print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
|
||||
assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item()
|
||||
|
||||
|
||||
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_forward"
|
||||
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
|
||||
# memory to run the model in fp32.
|
||||
@pytest.mark.parametrize('world_size', [4])
|
||||
@pytest.mark.parametrize('model_name', ["tiiuae/falcon-40b"])
|
||||
def test_falcon_parallel_forward(model_name, world_size):
|
||||
from apex.transformer import parallel_state
|
||||
|
||||
dtype = torch.float16
|
||||
config = falcon_config_to_gpt2_config(AutoConfig.from_pretrained(model_name,
|
||||
trust_remote_code=True))
|
||||
config.use_flash_attn = False
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
|
||||
config.fused_dropout_add_ln = False
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
||||
device = f'cuda:{torch.distributed.get_rank()}'
|
||||
assert world_size <= torch.distributed.get_world_size()
|
||||
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||||
rank = parallel_state.get_tensor_model_parallel_rank()
|
||||
process_group = parallel_state.get_tensor_model_parallel_group()
|
||||
|
||||
pretrained_state_dict = remap_state_dict_hf_falcon(state_dict_from_pretrained(model_name), config)
|
||||
|
||||
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
|
||||
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
|
||||
model.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 2
|
||||
max_seqlen = 256
|
||||
seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
|
||||
device=device)
|
||||
with torch.no_grad():
|
||||
out = model.transformer(input_ids)
|
||||
out, _ = all_gather_raw(out, process_group=process_group)
|
||||
out = rearrange(out, "(b s) d -> b s d", b=batch_size)
|
||||
logits = model(input_ids).logits
|
||||
logits = rearrange(logits, "(b s) d -> b s d", b=batch_size)
|
||||
logits, _ = all_gather_raw(logits, process_group)
|
||||
logits = rearrange(logits, '(n b) ... d -> b ... (n d)', b=batch_size)
|
||||
del model
|
||||
|
||||
if rank == 0:
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_hf.eval()
|
||||
out_hf = model_hf.transformer(input_ids).last_hidden_state.to(device=device)
|
||||
logits_hf = model_hf(input_ids).logits.to(device=device)
|
||||
del model_hf
|
||||
|
||||
# Without device_map, the model is loaded on the CPU, which is very slow
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
out_ref = model_ref.transformer(input_ids).last_hidden_state.to(device=device)
|
||||
logits_ref = model_ref(input_ids).logits.to(device=device)
|
||||
del model_ref
|
||||
|
||||
print(f'Output max diff: {(out - out_ref).abs().max().item()}')
|
||||
print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
|
||||
assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
|
||||
|
||||
print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
|
||||
print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
|
||||
print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
|
||||
print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * (logits_hf - logits_ref).abs().max().item()
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model_name', ["tiiuae/falcon-7b"])
|
||||
def test_falcon_generation(model_name):
|
||||
"""Check that our implementation (with all optimizations enabled) matches the
|
||||
HF implementation: the output of our forward pass in fp16 should be around the same as the HF
|
||||
forward pass in fp16, when compared to the HF forward pass in fp32.
|
||||
"""
|
||||
dtype = torch.float16
|
||||
device = 'cuda'
|
||||
config = falcon_config_to_gpt2_config(AutoConfig.from_pretrained(model_name,
|
||||
trust_remote_code=True))
|
||||
config.use_flash_attn = True
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
|
||||
config.fused_dropout_add_ln = True
|
||||
config.residual_in_fp32 = True
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
eos_token_id = tokenizer.eos_token_id
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
seqlen = 100
|
||||
max_length = 150
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map={"": device}, trust_remote_code=True
|
||||
)
|
||||
model_hf.eval()
|
||||
print("HF fp16")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
|
||||
return_dict_in_generate=True, output_scores=True)
|
||||
torch.cuda.synchronize()
|
||||
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
|
||||
del model_hf
|
||||
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map={"": device}, trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.no_grad():
|
||||
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
|
||||
del model_ref
|
||||
|
||||
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
|
||||
model.eval()
|
||||
|
||||
print('Without CUDA graph')
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out = model.generate(input_ids=input_ids, max_length=max_length,
|
||||
eos_token_id=eos_token_id, fused_ft_kernel=True,
|
||||
return_dict_in_generate=True, output_scores=True, timing=True,
|
||||
teacher_outputs=out_hf.sequences)
|
||||
torch.cuda.synchronize()
|
||||
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
|
||||
|
||||
# Capture graph outside the timing loop
|
||||
batch_size, seqlen_og = input_ids.shape
|
||||
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
|
||||
print('With CUDA graph')
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
out_cg = model.generate(input_ids=input_ids, max_length=max_length,
|
||||
fused_ft_kernel=True, cg=True,
|
||||
return_dict_in_generate=True, output_scores=True, timing=True,
|
||||
teacher_outputs=out_hf.sequences)
|
||||
torch.cuda.synchronize()
|
||||
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
|
||||
|
||||
with torch.no_grad():
|
||||
logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1]
|
||||
logits_hf = torch.stack(out_hf.scores, dim=1)
|
||||
logits = torch.stack(out.scores, dim=1)
|
||||
logits_cg = torch.stack(out_cg.scores, dim=1)
|
||||
|
||||
del model
|
||||
|
||||
hf_error = (logits_hf - logits_ref).abs().max().item()
|
||||
assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
|
||||
|
||||
print(f'HF fp16 logits max diff: {hf_error}')
|
||||
print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
||||
print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
|
||||
assert torch.equal(logits_cg, logits)
|
||||
|
||||
|
||||
# torchrun --no_python --nproc_per_node=4 pytest -q -s tests/models/test_falcon.py -k "falcon_parallel_generation"
|
||||
# We want to run this on a machine with 4 x A100 80GB or 8 x A100 40GB so we have enough
|
||||
# memory to run the model in fp32.
|
||||
@pytest.mark.parametrize('world_size', [4])
|
||||
@pytest.mark.parametrize('model_name', ["tiiuae/falcon-40b"])
|
||||
def test_falcon_parallel_generation(model_name, world_size):
|
||||
"""Check that our implementation matches the HF implementation:
|
||||
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
|
||||
the HF scores in fp32.
|
||||
"""
|
||||
from apex.transformer import parallel_state
|
||||
|
||||
dtype = torch.float16
|
||||
config = falcon_config_to_gpt2_config(AutoConfig.from_pretrained(model_name,
|
||||
trust_remote_code=True))
|
||||
config.use_flash_attn = False
|
||||
config.fused_bias_fc = True
|
||||
config.fused_mlp = False # We don't have fused MLP for "gelu" activation
|
||||
config.fused_dropout_add_ln = False
|
||||
config.residual_in_fp32 = True
|
||||
config.pad_vocab_size_multiple = 8 * world_size
|
||||
config.sequence_parallel = False # Need to set this to False for generation
|
||||
|
||||
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0"
|
||||
if not torch.distributed.is_initialized():
|
||||
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
||||
device = f'cuda:{torch.distributed.get_rank()}'
|
||||
assert world_size <= torch.distributed.get_world_size()
|
||||
parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
|
||||
rank = parallel_state.get_tensor_model_parallel_rank()
|
||||
process_group = parallel_state.get_tensor_model_parallel_group()
|
||||
|
||||
torch.manual_seed(0)
|
||||
batch_size = 1
|
||||
seqlen = 100
|
||||
max_length = 150
|
||||
input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
torch.distributed.barrier()
|
||||
|
||||
# Need this, otherwise when we capture the graph the process for GPU 1 would run on both
|
||||
# GPU0 and GPU1 and things would hang
|
||||
torch.cuda.set_device(device)
|
||||
|
||||
pretrained_state_dict = remap_state_dict_hf_falcon(state_dict_from_pretrained(model_name), config)
|
||||
|
||||
model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype)
|
||||
model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank))
|
||||
model.eval()
|
||||
|
||||
print('Without CUDA graph')
|
||||
out = model.generate(
|
||||
input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
|
||||
vocab_size=config.vocab_size, fused_ft_kernel=True,
|
||||
# teacher_outputs=out_hf.sequences,
|
||||
return_dict_in_generate=True, output_scores=True, timing=True
|
||||
)
|
||||
|
||||
# Capture graph outside the timing loop
|
||||
batch_size, seqlen_og = input_ids.shape
|
||||
model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
|
||||
print('With CUDA graph')
|
||||
out_cg = model.generate(
|
||||
input_ids=input_ids, max_length=max_length, tensor_parallel=world_size,
|
||||
vocab_size=config.vocab_size, fused_ft_kernel=True, cg=True,
|
||||
# teacher_outputs=out_hf.sequences,
|
||||
return_dict_in_generate=True, output_scores=True, timing=True
|
||||
)
|
||||
del model
|
||||
parallel_state.destroy_model_parallel()
|
||||
|
||||
if rank == 0:
|
||||
model_hf = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_hf.eval()
|
||||
print("HF fp16")
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
with torch.inference_mode():
|
||||
out_hf = model_hf.generate(
|
||||
input_ids=input_ids, max_length=max_length, return_dict_in_generate=True,
|
||||
output_scores=True
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
|
||||
del model_hf
|
||||
|
||||
model_ref = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
model_ref.eval()
|
||||
with torch.inference_mode():
|
||||
logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1]
|
||||
del model_ref
|
||||
logits_hf = torch.stack(out_hf.scores, dim=1)
|
||||
|
||||
logits = torch.stack(out.scores, dim=1)
|
||||
logits_cg = torch.stack(out_cg.scores, dim=1)
|
||||
|
||||
hf_error = (logits_hf - logits_ref).abs().max().item()
|
||||
print(f'HF fp16 logits max diff: {hf_error}')
|
||||
print(f'Logits max diff: {(logits - logits_ref).abs().max().item() }')
|
||||
assert (logits - logits_ref).abs().max().item() < 2 * hf_error
|
||||
print(f'Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }')
|
||||
assert torch.equal(logits_cg, logits)
|
||||
Loading…
Reference in New Issue
Block a user