[CrossEntropy] Use online softmax to simplify implementation

This commit is contained in:
Tri Dao 2024-08-24 17:39:57 -07:00
parent 32792d37ec
commit d79f9b41a8

View File

@ -34,7 +34,6 @@ def cross_entropy_fwd_kernel(
total_classes,
class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
n_cols, # shapes
n_rows,
logits_row_stride, # strides
BLOCK_SIZE: tl.constexpr,
HAS_SMOOTHING: tl.constexpr,
@ -42,26 +41,30 @@ def cross_entropy_fwd_kernel(
SPLIT: tl.constexpr,
):
row_idx = tl.program_id(0)
col_block_idx = tl.program_id(1)
logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
sum_logits = 0.0 # For smoothing
# Statistics for online softmax
m_i = -float("inf")
l_i = 0.0
for col_offset in range(0, n_cols, BLOCK_SIZE):
cols = col_offset + tl.arange(0, BLOCK_SIZE)
logits = tl.load(logits_ptr + cols, mask=cols < n_cols, other=-float("inf")).to(
tl.float32
) * logit_scale
if HAS_SMOOTHING:
sum_logits += tl.sum(tl.where(cols < n_cols, logits, 0.0))
m_i_new = tl.maximum(m_i, tl.max(logits))
l_i = tl.exp(m_i - m_i_new) * l_i + tl.sum(tl.exp(logits - m_i_new))
m_i = m_i_new
lse = tl.log(l_i) + m_i
tl.store(lse_ptr + row_idx, lse)
label_idx = tl.load(labels_ptr + row_idx)
logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to(
tl.float32
) * logit_scale
max_logits = tl.max(logits, 0)
if HAS_SMOOTHING:
sum_logits = tl.sum(tl.where(col_offsets < n_cols, logits, 0.0), 0)
lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits
tl.store(lse_ptr + col_block_idx * n_rows + row_idx, lse)
if label_idx == ignore_index:
loss = 0.0
z_loss = 0.0
else:
label_idx -= class_start_idx
if label_idx >= col_block_idx * BLOCK_SIZE and label_idx < min(
n_cols, (col_block_idx + 1) * BLOCK_SIZE
):
if label_idx >= 0 and label_idx < n_cols:
logits_label = tl.load(logits_ptr + label_idx) * logit_scale
if HAS_SMOOTHING:
loss = (
@ -82,9 +85,9 @@ def cross_entropy_fwd_kernel(
loss += z_loss
else:
z_loss = 0.0
tl.store(loss_ptr + col_block_idx * n_rows + row_idx, loss)
tl.store(loss_ptr + row_idx, loss)
if not SPLIT:
tl.store(z_loss_ptr + col_block_idx * n_rows + row_idx, z_loss)
tl.store(z_loss_ptr + row_idx, z_loss)
@triton.heuristics(
@ -161,27 +164,20 @@ class CrossEntropyLoss(torch.autograd.Function):
if logits.stride(-1) != 1:
logits = logits.contiguous()
# Set these similar to https://github.com/openai/triton/blob/main/python/tutorials/02-fused-softmax.py
MAX_BLOCK_SIZE = 64 * 1024
MAX_BLOCK_SIZE = 16 * 1024
BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE)
num_warps = (
4
if BLOCK_SIZE < 2048
else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32))
)
# We may split the lse computation across multiple blocks, then do a reduction
# lse(local_lse) to get the final LSE. This is faster for large n_cols (e.g., > 64k)
# where having just one thread block processing more than 64k elements is slow.
split = world_size > 1 or n_cols > MAX_BLOCK_SIZE
n_splits = (n_cols + BLOCK_SIZE - 1) // BLOCK_SIZE
loss_shape = (n_splits, n_rows) if n_splits > 1 else (n_rows,)
losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
lse = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
z_losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device)
losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
lse = torch.empty(n_rows, dtype=torch.float, device=logits.device)
z_losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
# Need this, otherwise Triton tries to launch from cuda:0 and we get
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
with torch.cuda.device(logits.device.index):
cross_entropy_fwd_kernel[(n_rows, n_splits)](
cross_entropy_fwd_kernel[(n_rows,)](
losses, # data ptrs
lse,
z_losses,
@ -194,23 +190,19 @@ class CrossEntropyLoss(torch.autograd.Function):
total_classes,
class_start_idx,
n_cols, # shapes
n_rows,
logits.stride(0), # strides
BLOCK_SIZE=BLOCK_SIZE, # constants
num_warps=num_warps,
SPLIT=split,
SPLIT=world_size > 1,
)
if split:
if world_size > 1:
# If there's no smoothing, if labels are in the vocab of this partition, losses contains
# - predicted logit, and 0 otherwise.
# If there's smoothing=0.1, for labels in the vocab of this partition, losses contains
# -0.9 * predicted logit - 0.1 * sum logit / total_classes.
# For labels not in the vocab of this partition, losses contains
# -0.1 * sum logit / total_classes.
if n_splits > 1:
lse = torch.logsumexp(lse, dim=0)
losses = losses.sum(dim=0)
if world_size > 1:
lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device)
torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group)
@ -243,6 +235,7 @@ class CrossEntropyLoss(torch.autograd.Function):
ctx.class_start_idx = class_start_idx
ctx.inplace_backward = inplace_backward
return losses, z_losses
@staticmethod