[Gen] Pass qkv_stride to ft_attention kernel for batched generation

This commit is contained in:
Tri Dao 2023-01-15 12:02:30 -08:00
parent 7c2191542a
commit f1e01c27ba
2 changed files with 15 additions and 21 deletions

View File

@ -23,17 +23,6 @@
AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
}
// #define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, NAME, ...) \
// if (TYPE == at::ScalarType::Half) { \
// using scalar_t = at::Half; \
// __VA_ARGS__(); \
// } else if (TYPE == at::ScalarType::Float) { \
// using scalar_t = float; \
// __VA_ARGS__(); \
// } else { \
// AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
// }
template<typename T>
void masked_multihead_attention(const Masked_multihead_attention_params<T>& params,
const cudaStream_t& stream);
@ -66,6 +55,7 @@ void set_params(Masked_multihead_attention_params<T> &params,
const int timestep,
const int rotary_embedding_dim,
const bool neox_rotary_style,
const int qkv_batch_stride,
T *q_ptr,
T *k_ptr,
T *v_ptr,
@ -85,7 +75,7 @@ void set_params(Masked_multihead_attention_params<T> &params,
params.v_cache = v_cache_ptr;
params.out = out_ptr;
params.cache_indir = nullptr;
params.stride = 0;
params.stride = qkv_batch_stride;
params.batch_size = batch_size;
params.beam_width = 1;
params.memory_max_len = memory_max_seqlen;
@ -98,8 +88,7 @@ void set_params(Masked_multihead_attention_params<T> &params,
params.total_padding_tokens = nullptr;
params.masked_tokens = nullptr;
params.prefix_prompt_lengths = nullptr;
// params.max_prefix_prompt_length = memory_max_seqlen; // TODO: waht should this be?
params.max_prefix_prompt_length = 0; // TODO: waht should this be?
params.max_prefix_prompt_length = 0;
params.relative_attention_bias = nullptr;
params.relative_attention_bias_stride = 0;
params.cross_attention_out = nullptr;
@ -127,10 +116,15 @@ torch::Tensor single_query_attention(const torch::Tensor q,
CHECK_SHAPE(q, batch_size, nheads, headdim);
CHECK_SHAPE(k, batch_size, nheads, headdim);
CHECK_SHAPE(v, batch_size, nheads, headdim);
// TODO: Check shape of k_cache: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32
// TODO: avoid contiguous requirment by storing the stride
CHECK_CONTIGUOUS(q); CHECK_CONTIGUOUS(k); CHECK_CONTIGUOUS(v);
CHECK_CONTIGUOUS(v_cache);
CHECK_SHAPE(v_cache, batch_size, nheads, memory_max_seqlen, headdim);
// k_cache shape: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32
int packsize = k_cache.dtype() == torch::kFloat32 ? 4 : 8;
CHECK_SHAPE(k_cache, batch_size, nheads, headdim / packsize, memory_max_seqlen, packsize);
TORCH_CHECK(q.stride(2) == 1 && q.stride(1) == headdim);
TORCH_CHECK(k.stride(2) == 1 && k.stride(1) == headdim);
TORCH_CHECK(v.stride(2) == 1 && v.stride(1) == headdim);
TORCH_CHECK(q.stride(0) == k.stride(0) && q.stride(0) == v.stride(0));
CHECK_CONTIGUOUS(v_cache); CHECK_CONTIGUOUS(k_cache);
if (length_per_sample_.has_value()) {
auto length_per_sample = length_per_sample_.value();
@ -146,11 +140,11 @@ torch::Tensor single_query_attention(const torch::Tensor q,
torch::Tensor out = torch::empty_like(q);
DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), out.scalar_type(), "single_query_attention", [&] {
DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), "single_query_attention", [&] {
using DataType = typename SATypeConverter<scalar_t>::Type;
Masked_multihead_attention_params<DataType> params;
set_params(params, batch_size, nheads, memory_max_seqlen, headdim, timestep,
rotary_embedding_dim, neox_rotary_style,
rotary_embedding_dim, neox_rotary_style, q.stride(0),
reinterpret_cast<DataType*>(q.data_ptr()),
reinterpret_cast<DataType*>(k.data_ptr()),
reinterpret_cast<DataType*>(v.data_ptr()),

View File

@ -57,7 +57,7 @@ def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
input_ids = tokenizer("Hello, my dog is cute and ",
return_tensors="pt").input_ids.to(device=device)
max_length = 30
# input_ids = torch.randint(0, 100, (1, 10), dtype=torch.long, device='cuda')
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
# Slow generation for reference