[Gen] Add OPT to generation test

This commit is contained in:
Tri Dao 2023-01-17 19:59:06 -08:00
parent 88173a1aaf
commit f68d41ec77
4 changed files with 164 additions and 11 deletions

View File

@ -71,7 +71,8 @@ def sample(logits, top_k=1, top_p=0.0, temperature=1.0):
def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
vocab_size=None, tensor_parallel=1, fused_ft_kernel=False, cg=False, timing=False):
eos_token_id=None, vocab_size=None, tensor_parallel=1, fused_ft_kernel=False,
cg=False, timing=False):
"""Decoding, either greedy or with top-k or top-p sampling.
If top-k = 0, don't limit the number of candidates (pure sampling).
Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
@ -104,14 +105,15 @@ def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
scores = []
with torch.inference_mode():
logits = model(input_ids, inference_params=inference_params).logits[:, -1]
if timing:
torch.cuda.synchronize()
start = time.time()
if vocab_size is not None:
logits = logits[..., :vocab_size]
scores.append(logits)
next_token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature)
sequences = [next_token]
inference_params.sequence_len_offset = seqlen_og
if timing:
start = time.time()
while True:
position_ids = torch.full((batch_size, 1), inference_params.sequence_len_offset,
dtype=torch.long, device=input_ids.device)
@ -127,11 +129,13 @@ def decode(input_ids, model, max_length, top_k=1, top_p=0.0, temperature=1.0,
next_token = sample(logits, top_k=top_k, temperature=temperature)
sequences.append(next_token)
inference_params.sequence_len_offset += 1
if eos_token_id is not None and (next_token == eos_token_id).all():
break
if inference_params.sequence_len_offset >= max_length - 1:
break
if timing:
torch.cuda.synchronize()
print(f'Decoding time: {time.time() - start}')
print(f'Decoding time: {(time.time() - start) * 1000:.0f}ms')
output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
return output_cls(
sequences=torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1),

View File

@ -1,11 +1,33 @@
import torch
from transformers.utils import WEIGHTS_NAME
from transformers.utils.hub import cached_file
from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from transformers.utils import is_remote_url
from transformers.modeling_utils import load_state_dict
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
def state_dict_from_pretrained(model_name, device=None, dtype=None):
state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device)
is_sharded = False
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
_raise_exceptions_for_missing_entries=False)
if resolved_archive_file is None:
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME,
_raise_exceptions_for_missing_entries=False)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is None:
raise EnvironmentError(f"Model name {model_name} was not found.")
if is_sharded:
# resolved_archive_file becomes a list of files that point to the different
# checkpoint shards in this case.
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
model_name, resolved_archive_file
)
state_dict = {}
for sharded_file in resolved_archive_file:
state_dict.update(torch.load(sharded_file, map_location=device))
else:
state_dict = torch.load(cached_file(model_name, WEIGHTS_NAME), map_location=device)
if dtype is not None:
state_dict = {k: v.to(dtype) for k, v in state_dict.items()}
return state_dict

View File

@ -1,18 +1,22 @@
import os
import re
import time
import torch
import pytest
from einops import rearrange
from transformers import GPT2Config, GPT2Tokenizer
from transformers import GPT2Config, GPT2Tokenizer, OPTConfig, AutoTokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF
from transformers.models.opt.modeling_opt import OPTForCausalLM
from flash_attn.models.gpt import GPTLMHeadModel
from flash_attn.models.gpt import remap_state_dict_gpt2
from flash_attn.models.opt import remap_state_dict_opt, opt_config_to_gpt2_config
from flash_attn.utils.pretrained import state_dict_from_pretrained
from flash_attn.utils.distributed import all_gather_raw
from flash_attn.utils.generation import update_graph_cache
@pytest.mark.parametrize('fused_ft_kernel', [False, True])
@ -22,7 +26,7 @@ from flash_attn.utils.distributed import all_gather_raw
@pytest.mark.parametrize('rotary', [False, True])
# @pytest.mark.parametrize('rotary', [False])
@pytest.mark.parametrize('model_name', ["gpt2"])
def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
def test_greedy_decode_gpt2(model_name, rotary, optimized, fused_ft_kernel):
"""Check that our implementation of GPT2 generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
@ -49,13 +53,14 @@ def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
if not rotary:
model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device)
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).to(device=device, dtype=dtype)
model_hf = GPT2LMHeadModelHF.from_pretrained(model_name,
torch_dtype=dtype).to(device=device)
model_ref.eval()
model_hf.eval()
torch.manual_seed(0)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
input_ids = tokenizer("Hello, my dog is cute and ",
input_ids = tokenizer("Hello, my dog is cute and",
return_tensors="pt").input_ids.to(device=device)
max_length = 30
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
@ -106,3 +111,124 @@ def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel):
assert torch.all(out.sequences == out_hf.sequences)
assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()
@pytest.mark.parametrize('model_name', ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b"])
# @pytest.mark.parametrize('model_name', ["facebook/opt-6.7b"])
def test_greedy_decode_opt(model_name):
"""Check that our implementation of OPT generation matches the HF implementation:
the scores in fp16 should be around the same as the HF scores in fp16, when compared to
the HF scores in fp32.
"""
print(f'\nMODEL: {model_name}')
verbose = False
dtype = torch.float16
device = 'cuda'
rtol, atol = 3e-3, 3e-1
fused_ft_kernel = True
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
# Only prenorm supports residual_in_fp32
config.residual_in_fp32 = getattr(config, 'prenorm', True)
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
model.eval()
torch.manual_seed(0)
# OPT tokenizer requires use_fast=False
# https://huggingface.co/docs/transformers/model_doc/opt
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
eos_token_id = tokenizer.eos_token_id
input_ids = tokenizer("Hello, my dog is cute and",
return_tensors="pt").input_ids.to(device=device)
max_length = 30
# input_ids = torch.randint(0, 100, (2, 10), dtype=torch.long, device='cuda')
# max_length = input_ids.shape[1] + 40
# Slow generation for reference
sequences = []
scores = []
cur_input_ids = input_ids
with torch.inference_mode():
scores.append(model(cur_input_ids).logits[:, -1])
sequences.append(scores[-1].argmax(dim=-1))
for _ in range(input_ids.shape[1] + 1, max_length):
cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1)
scores.append(model(cur_input_ids).logits[:, -1])
sequences.append(scores[-1].argmax(dim=-1))
if eos_token_id is not None and (sequences[-1] == eos_token_id).all():
break
sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1)
scores = tuple(scores)
print('Without CUDA graph')
torch.cuda.synchronize()
start = time.time()
out = model.generate(input_ids=input_ids, max_length=max_length,
eos_token_id=eos_token_id, fused_ft_kernel=fused_ft_kernel,
return_dict_in_generate=True, output_scores=True, timing=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
if verbose:
print(out.sequences)
print(tokenizer.batch_decode(out.sequences.tolist()))
if fused_ft_kernel:
# Capture graph outside the timing loop
batch_size, seqlen_og = input_ids.shape
model._decoding_cache = update_graph_cache(
model, None, batch_size, seqlen_og, max_length
)
print('With CUDA graph')
torch.cuda.synchronize()
start = time.time()
out_cg = model.generate(input_ids=input_ids, max_length=max_length,
fused_ft_kernel=fused_ft_kernel, cg=True,
return_dict_in_generate=True, output_scores=True, timing=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
if verbose:
print(out_cg.sequences)
print(tokenizer.batch_decode(out.sequences.tolist()))
del model
model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device)
model_hf.eval()
print("HF fp16")
torch.cuda.synchronize()
start = time.time()
out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
del model_hf
model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device)
model_ref.eval()
print("HF fp32")
torch.cuda.synchronize()
start = time.time()
out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length,
return_dict_in_generate=True, output_scores=True)
torch.cuda.synchronize()
print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms')
del model_ref
print(tokenizer.batch_decode(out_ref.sequences.tolist()))
if verbose:
print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}')
print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}')
assert torch.all(out.sequences == sequences)
assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1),
rtol=rtol, atol=atol)
assert torch.all(out.sequences == out_ref.sequences)
assert torch.all(out.sequences == out_hf.sequences)
assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()

View File

@ -35,6 +35,7 @@ def test_opt_optimized(model_name):
config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name))
config.use_flash_attn = True
config.fused_bias_fc = True
config.fused_mlp = True
config.fused_dropout_add_ln = True
# Only prenorm supports residual_in_fp32
config.residual_in_fp32 = getattr(config, 'prenorm', True)