Move benchmark utils, support AMP

This commit is contained in:
Tri Dao 2022-10-23 12:50:00 -07:00
parent a5a8806d1a
commit fb88e5e4b3
2 changed files with 53 additions and 36 deletions

View File

@ -6,7 +6,7 @@ import torch.nn.functional as F
from einops import rearrange, repeat
from benchmarks.utils import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined
from flash_attn.bert_padding import unpad_input, pad_input
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func

View File

@ -1,17 +1,23 @@
# Adapted from https://github.com/HazyResearch/hippo/blob/datasets/benchmark/utils.py
# Copyright (c) 2022, Tri Dao.
""" Useful functions for writing test code. """
import torch
import torch.utils.benchmark as benchmark
def benchmark_forward(fn, *inputs, min_run_time = 0.2, repeats = 10, desc='', verbose=True, **kwinputs):
def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, amp=False,
amp_dtype=torch.float16, **kwinputs):
""" Use Pytorch Benchmark on the forward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward pass')
def fn_amp(*inputs, **kwinputs):
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
fn(*inputs, **kwinputs)
for _ in range(repeats): # warmup
fn_amp(*inputs, **kwinputs)
t = benchmark.Timer(
stmt='fn(*inputs, **kwinputs)',
globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs},
stmt='fn_amp(*inputs, **kwinputs)',
globals={'fn_amp': fn_amp, 'inputs': inputs, 'kwinputs': kwinputs},
num_threads=torch.get_num_threads(),
)
m = t.timeit(repeats)
@ -20,50 +26,51 @@ def benchmark_forward(fn, *inputs, min_run_time = 0.2, repeats = 10, desc='', ve
return t, m
def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
amp_dtype=torch.float16, **kwinputs):
""" Use Pytorch Benchmark on the backward pass of an arbitrary function. """
if verbose:
print(desc, '- Backward pass')
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
for _ in range(repeats): # warmup
y.backward(grad, retain_graph=True)
t = benchmark.Timer(
stmt='y.backward(grad, retain_graph=True)',
globals={'y': y, 'grad': grad},
num_threads=torch.get_num_threads(),
)
)
m = t.timeit(repeats)
if verbose:
print(m)
return t, m
def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
amp_dtype=torch.float16, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
if verbose:
print(desc, '- Forward + Backward pass')
# y = fn(*inputs, **kwinputs)
# if grad is None:
# grad = torch.randn_like(y)
# else:
# if grad.shape != y.shape:
# raise RuntimeError('Grad shape does not match output shape')
# del y
def f(grad, *inputs, **kwinputs):
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
y = fn(*inputs, **kwinputs)
if type(y) is tuple:
y = y[0]
if grad is None:
grad = torch.randn_like(y)
else:
if grad.shape != y.shape:
raise RuntimeError('Grad shape does not match output shape')
y.backward(grad, retain_graph=True)
for _ in range(repeats): # warmup
f(grad, *inputs, **kwinputs)
t = benchmark.Timer(
stmt='f(grad, *inputs, **kwinputs)',
globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs},
@ -75,43 +82,53 @@ def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True
return t, m
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs):
def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False,
amp_dtype=torch.float16, **kwinputs):
""" Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """
return (
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, **kwinputs),
benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose,
amp=amp, amp_dtype=amp_dtype, **kwinputs),
benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
amp=amp, amp_dtype=amp_dtype, **kwinputs),
benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose,
**kwinputs),
amp=amp, amp_dtype=amp_dtype, **kwinputs),
)
def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False, verbose=True):
def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False,
amp_dtype=torch.float16, cpu=False, verbose=True, **kwinputs):
""" Wrap benchmark functions in Pytorch profiler to see CUDA information. """
if backward:
g = torch.randn_like(fn(*inputs))
for _ in range(10): # Warm up
with torch.autocast(device_type='cuda', enabled=amp):
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
g = torch.randn_like(fn(*inputs, **kwinputs))
for _ in range(30): # Warm up
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
if backward:
for x in inputs:
if isinstance(x, torch.Tensor):
x.grad = None
fn(*inputs) if not backward else fn(*inputs).backward(g)
# fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g)
out = fn(*inputs, **kwinputs)
# Backward should be done outside autocast
if backward:
out.backward(g)
activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA]
with torch.profiler.profile(
# activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA,],
activities=[torch.profiler.ProfilerActivity.CUDA,],
activities=activities,
record_shapes=True,
# profile_memory=True,
with_stack=True,
) as prof:
with torch.autocast(device_type='cuda', enabled=amp):
with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp):
if backward:
for x in inputs:
if isinstance(x, torch.Tensor):
x.grad = None
fn(*inputs) if not backward else fn(*inputs).backward(g)
out = fn(*inputs, **kwinputs)
if backward: out.backward(g)
if verbose:
print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
print(prof.key_averages().table(row_limit=50))
if trace_filename is not None:
prof.export_chrome_trace(trace_filename)
@ -124,6 +141,6 @@ def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs):
torch.cuda.synchronize()
mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000)
if verbose:
print(f'{desc} max memory: ', mem)
print(f'{desc} max memory: {mem}GB')
torch.cuda.empty_cache()
return mem