from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_forward, benchmark_all, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func # from flash_attn.triton.fused_attention import attention as attention from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func from flash_attn.flash_attn_triton_og import attention as attention_og try: from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax except ImportError: scaled_upper_triang_masked_softmax = None def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def attention_megatron(qkv): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) output = torch.einsum('bhts,bshd->bthd', attention, v) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 2 seqlen = 4096 nheads = 12 headdim = 128 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 dropout_p = 0.0 causal = True dtype = torch.bfloat16 device = 'cuda' qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) benchmark_all(flash_attn_unpadded_qkvpacked_func, rearrange(qkv, 'b s ... -> (b s) ...'), cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention') benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, desc='PyTorch Attention') benchmark_all(flash_attn_qkvpacked_func, qkv, causal, repeats=repeats, desc='FlashAttention Triton') pytorch_profiler(flash_attn_qkvpacked_func, qkv, causal, backward=True) q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG') # pytorch_profiler(attention, q, k, v, 1.0, backward=True) if scaled_upper_triang_masked_softmax is not None: benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')