import math import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_qkvpacked_func, _get_block_size, flash_attn_unpadded_kvpacked_func, flash_attn_unpadded_func from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_split_func from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis is_sm75 = torch.cuda.get_device_capability('cuda') == (7, 5) is_sm80 = torch.cuda.get_device_capability('cuda') == (8, 0) def generate_random_padding_mask(max_seqlen, batch_size, device, mode='random'): assert mode in ['full', 'random', 'third', 'split'] if mode == 'full': lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32) elif mode == 'random': lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'third': lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'split': lengths0 = torch.randint(min(128, max_seqlen), max_seqlen + 1, (batch_size // 4 * 3, 1), device=device) lengths1 = torch.randint(min(max(1, max_seqlen - 20), 128), min(max_seqlen, 128) + 1, (batch_size - batch_size // 4 * 3, 1), device=device) lengths = torch.cat([lengths0, lengths1], dim=0) padding_mask = repeat(torch.arange(max_seqlen, device=device), 's -> b s', b=batch_size) < lengths return padding_mask def generate_qkv(x, Wqkv, nheads, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False): """ Arguments: x: (batch_size, seqlen, nheads * d) Wqkv: nn.Linear(nheads * d, 3 * nheads * d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen, dim = x.shape q, k, v = Wqkv(x).chunk(3, dim=-1) if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask) q_unpad = rearrange(q_unpad, 'nnz (h d) -> nnz h d', h=nheads) output_pad_fn = lambda output_unpad: rearrange( pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: q_unpad = rearrange(q, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_q = seqlen output_pad_fn = lambda output_unpad: rearrange(output_unpad, '(b s) h d -> b s h d', b=batch_size) if key_padding_mask is not None: k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask) k_unpad = rearrange(k_unpad, 'nnz (h d) -> nnz h d', h=nheads) v_unpad, _, _, _ = unpad_input(v, key_padding_mask) v_unpad = rearrange(v_unpad, 'nnz (h d) -> nnz h d', h=nheads) else: k_unpad = rearrange(k, 'b s (h d) -> (b s) h d', h=nheads) v_unpad = rearrange(v, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_k = seqlen if qkvpacked: assert (query_padding_mask == key_padding_mask).all() qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = rearrange(torch.stack([q, k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) if query_padding_mask is not None: dqkv_pad_fn = lambda dqkv_unpad: rearrange( pad_input(rearrange(dqkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_q, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=3, h=nheads ) else: dqkv_pad_fn = lambda dqkv_unpad: rearrange(dqkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q, qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn) elif kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) q = rearrange(q, 'b s (h d) -> b s h d', h=nheads) kv = rearrange(torch.stack([k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) dq_pad_fn = output_pad_fn if key_padding_mask is not None: dkv_pad_fn = lambda dkv_unpad: rearrange( pad_input(rearrange(dkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_k, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=2, h=nheads ) else: dkv_pad_fn = lambda dkv_unpad: rearrange(dkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), kv.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dkv_pad_fn) else: q, k, v = [rearrange(z, 'b s (h d) -> b s h d', h=nheads).detach().requires_grad_() for z in [q, k, v]] dq_pad_fn = output_pad_fn if key_padding_mask is not None: dk_pad_fn = lambda dk_unpad: rearrange( pad_input(rearrange(dk_unpad, 'nnz h d -> nnz (h d)'), indices_k, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, '(b s) h d -> b s h d', b=batch_size) return (q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(), v_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) def attention_ref(q, k, v, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k: (batch_size, seqlen_k, nheads, head_dim) v: (batch_size, seqlen_k, nheads, head_dim) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) dropout_p: float dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k) upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast output back to fp16/bf16. reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.) without changing the math. This is to estimate the numerical error from operation reordering. Output: output: (batch_size, seqlen_q, nheads, head_dim) attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout """ dtype_og = q.dtype if upcast: q, k, v = q.float(), k.float(), v.float() seqlen_q, seqlen_k = q.shape[1], k.shape[1] d = q.shape[-1] if not reorder_ops: scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) else: scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d)) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) dropout_scaling = 1.0 / (1 - dropout_p) # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling # output = torch.einsum('bhts,bshd->bthd', attention_drop , v) if dropout_mask is not None: attention_drop = attention.masked_fill(~dropout_mask, 0.0) else: attention_drop = attention output = torch.einsum('bhts,bshd->bthd', attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, 'b s -> b s 1 1'), 0.0) attention = attention.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og) def attention_kvpacked_ref(q, kv, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def attention_qkvpacked_ref(qkv, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def generate_sparsity_mask(seqlen, sparsity=0.3): repeats = seqlen // 16 // 2 # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1) nrow, ncol = seqlen // 16, seqlen // 256 mask = torch.rand(nrow, ncol, device='cuda') < sparsity return mask def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) blockmask: (seqlen / 16, seqlen / 256) attn_mask: (batch_size, seqlen) dropout_p: float dropout_mask: (batch_size, nheads, seqlen, seqlen) Output: output: (batch_size, seqlen, nheads, head_dim) attention: softmax after dropout """ q, k, v = qkv.float().unbind(dim=2) d = qkv.shape[-1] seqlen = qkv.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) blockmask = repeat(blockmask, 's_16 s_256 -> (s_16 16) (s_256 256)') blockmask = blockmask[:seqlen, :seqlen] scores.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), float('-inf')) attention = torch.softmax(scores, dim=-1) attention = attention.masked_fill(rearrange(~attn_mask, 'b s -> b 1 s 1'), 0.0) attention = attention.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), 0.0) attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1 1'), 0) return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype) def convert_flash_attn_S_to_softmax(S, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False): """FlashAttention stores the S matrix in a different way. Arguments: S: (batch_size, nheads, seqlen_q, seqlen_k) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ S_flat = rearrange(S, 'b h t s -> b h (t s)') seqlen_q, seqlen_k = S.shape[-2:] block_size = _get_block_size(S.device, head_dim, is_dropout) loop_steps = (seqlen_k + block_size - 1) // block_size warps_n = 4 mmas_n = (seqlen_k // warps_n // 16) if seqlen_k <= block_size else (block_size // warps_n // 16) S_converted = rearrange(S_flat, 'b h (loop nsteps mmas_n warps_n eight t r c0 c1) -> b h (nsteps r eight) (loop mmas_n warps_n c0 t c1)', loop=loop_steps, nsteps=seqlen_q // 16, mmas_n=mmas_n, warps_n=warps_n, eight=8, t=4, r=2, c0=2, c1=2) # Need to zero out things not in attention_mask in case S was initialized with random values # and some of those values aren't overwritten. seqlen_q_og = query_padding_mask.shape[-1] if seqlen_q_og < seqlen_q: query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og)) else: query_padding_mask = query_padding_mask[:, :seqlen_q] S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) seqlen_k_og = key_padding_mask.shape[-1] if seqlen_k_og < seqlen_k: key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og)) else: key_padding_mask = key_padding_mask[:, :seqlen_k] S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), 0.0) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1) S_converted.masked_fill_(causal_mask, 0.0) if seqlen_q_og < seqlen_q: S_converted = S_converted[:, :, :seqlen_q_og, :] else: S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q)) if seqlen_k_og < seqlen_k: S_converted = S_converted[:, :, :, :seqlen_k_og] else: S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k)) return S_converted def normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None, is_dropout=False, causal=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k, v: (batch_size, seqlen_k, nheads, head_dim) key_padding_mask: (batch_size, seqlen_q) Output: softmax_lse: (batch_size, nheads, seqlen_q) softmax_max: (batch_size, nheads, seqlen_q) """ q, k, v = q.float(), k.float(), v.float() _, seqlen_q, _, head_dim = q.shape seqlen_k = k.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(head_dim), k) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) block_size = _get_block_size(scores.device, head_dim, is_dropout) scores_block = scores.split(block_size, dim=-1) lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1) lcse_block = torch.logcumsumexp(lse_block, dim=-1).unbind(dim=-1) scores_max_block = ([torch.amax(scores_block[0], dim=-1)] + [torch.maximum(torch.amax(s, dim=-1), lcse) for s, lcse in zip(scores_block[1:], lcse_block[:-1])]) attn_unnorm_block = attn_unnorm.split(block_size, dim=-1) attn_norm = torch.cat([a / rearrange(torch.exp(lcse_block[-1] - m), 'b h s -> b h s 1') for a, m in zip(attn_unnorm_block, scores_max_block)], dim=-1) if query_padding_mask is not None: attn_norm.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return attn_norm.to(dtype=attn_unnorm.dtype) def get_dropout_fraction(dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False): """ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop. query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape dropped = ~dropout_mask if query_padding_mask is not None: dropped.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), False) if key_padding_mask is not None: dropped.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), False) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1) dropped.masked_fill_(causal_mask, False) dropped_total = dropped.sum() query_lengths = (query_padding_mask.sum(dim=-1) if query_padding_mask is not None else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)) key_lengths = (key_padding_mask.sum(dim=-1) if key_padding_mask is not None else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)) if not causal: numel_per_batch = query_lengths * key_lengths else: numel_per_batch = torch.where( query_lengths <= key_lengths, query_lengths * (query_lengths + 1) / 2, query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2) ) return dropped_total / (numel_per_batch.sum() * nheads) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_qkvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) # Set smaller batch size so it would trigger num_splits > 1 batch_size = 8 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.98 <= dropout_fraction / dropout_p <= 1.02 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 # Error for dK and dV could be a bit higher if we're splitting along seqlen_q dimension assert (dqkv - dqkv_ref).abs().max().item() <= 4 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_kvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv, output_pad_fn, dq_pad_fn, dkv_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask, kvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_kvpacked_func( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dkv_unpad, = torch.autograd.grad(output, (q_unpad, kv_unpad), g) dq = dq_pad_fn(dq_unpad) dkv = dkv_pad_fn(dkv_unpad) dq_ref, dkv_ref, = torch.autograd.grad(output_ref, (q, kv), g) dq_pt, dkv_pt = torch.autograd.grad(output_pt, (q, kv), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dkv[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV max diff: {(dkv[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dkv_pt[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV Pytorch max diff: {(dkv_pt[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dkv - dkv_ref).abs().max().item() <= 2 * (dkv_pt - dkv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dkv, dkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output, (q_unpad, k_unpad, v_unpad), g) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dk, dk_ref, rtol=rtol, atol=atol) # assert torch.allclose(dv, dv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [512]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_split(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='split') batch_size0 = batch_size // 4 * 3 # this must match what's in generate_random_padding_mask # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen0, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) max_seqlen1 = 128 output_unpad, sm_lse, S_dmask0, S_dmask1 = flash_attn_unpadded_qkvpacked_split_func( qkv_unpad, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask0_converted = convert_flash_attn_S_to_softmax( S_dmask0, key_padding_mask[:batch_size0], key_padding_mask[:batch_size0], d, dropout_p > 0.0, causal=causal ) S_dmask1_converted = convert_flash_attn_S_to_softmax( S_dmask1, key_padding_mask[batch_size0:, :max_seqlen1], key_padding_mask[batch_size0:, :max_seqlen1], d, dropout_p > 0.0, causal=causal ) padding = (S_dmask0_converted.shape[-1] - S_dmask1_converted.shape[-1], S_dmask0_converted.shape[-2] - S_dmask1_converted.shape[-2]) S_dmask_converted = torch.cat([S_dmask0_converted, F.pad(S_dmask1_converted, (0, padding[0], 0, padding[1]))], dim=0) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) torch.random.manual_seed(0) output_unpad_0, sm_lse_0, S_dmask_0 = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted_0 = convert_flash_attn_S_to_softmax( S_dmask_0, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output_unpad_0) dq_unpad_0, dk_unpad_0, dv_unpad_0, = torch.autograd.grad(output_unpad_0, (q_unpad, k_unpad, v_unpad), g) for _ in range(10): torch.random.manual_seed(0) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) assert torch.equal(output_unpad, output_unpad_0) # sm_lse has some parts that are uninitialized from torch.empty # assert torch.equal(sm_lse, sm_lse_0) assert torch.equal(S_dmask_converted, S_dmask_converted_0) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output_unpad, (q_unpad, k_unpad, v_unpad), g) assert torch.equal(dq_unpad, dq_unpad_0) assert torch.equal(dk_unpad, dk_unpad_0) assert torch.equal(dv_unpad, dv_unpad_0) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason='requires multiple GPUs') def test_flash_attn_multigpu(): seqlen = 256 d = 64 dropout_p = 0.0 causal = False dtype = torch.float16 device = 'cuda:1' torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() from flash_attn.flash_attn_triton import flash_attn_func @pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [40, 64, 128, 88]) # @pytest.mark.parametrize('d', [64]) # @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (2048, 2048)]) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 128)]) def test_flash_attn_triton(seqlen_q, seqlen_k, d, causal, dtype): if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 8 nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2) q, k, v = [x.detach().requires_grad_() for x in [q, k, v]] output = flash_attn_func(q, k, v, causal) output_ref, attn_ref = attention_ref(q, k, v, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, causal=causal, upcast=False, reorder_ops=True) print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') run_bwd = d in [16, 32, 64, 128] if run_bwd: g = torch.randn_like(output) dq, dk, dv = torch.autograd.grad(output, (q, k, v), g) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) if run_bwd: assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()