import re import torch import pytest from einops import rearrange from transformers import GPT2Config, GPT2Tokenizer from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.gpt import remap_state_dict_gpt2 from flash_attn.utils.pretrained import state_dict_from_pretrained @pytest.mark.parametrize('fused_ft_kernel', [False, True]) # @pytest.mark.parametrize('fused_ft_kernel', [True]) @pytest.mark.parametrize('optimized', [False, True]) # @pytest.mark.parametrize('optimized', [False]) @pytest.mark.parametrize('rotary', [False, True]) # @pytest.mark.parametrize('rotary', [False]) @pytest.mark.parametrize('model_name', ["gpt2"]) def test_greedy_decode(model_name, rotary, optimized, fused_ft_kernel): """Check that our implementation of GPT2 generation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ dtype = torch.float16 device = 'cuda' rtol, atol = 3e-3, 3e-1 config = GPT2Config.from_pretrained(model_name) if rotary: config.n_positions = 0 config.rotary_emb_dim = 64 if optimized: config.use_flash_attn = True config.fused_bias_fc = True config.fused_dense_gelu_dense = True config.fused_dropout_add_ln = True # if not rotary, we load the weight from HF but ignore the position embeddings. # The model would be nonsense but it doesn't matter for the test. model = GPTLMHeadModel.from_pretrained(model_name, config, strict=not rotary, device=device) model = model.to(dtype=dtype) model.eval() if not rotary: model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda() model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype) model_ref.eval() model_hf.eval() torch.manual_seed(0) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") input_ids = tokenizer("Hello, my dog is cute and ", return_tensors="pt").input_ids.cuda() max_length = 30 # input_ids = torch.randint(0, 100, (1, 512), dtype=torch.long, device='cuda') # max_length = 512 + 50 # Slow generation for reference sequences = [] scores = [] cur_input_ids = input_ids with torch.inference_mode(): scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) for _ in range(input_ids.shape[1] + 1, max_length): cur_input_ids = torch.cat([cur_input_ids, rearrange(sequences[-1], 'b -> b 1')], dim=-1) scores.append(model(cur_input_ids).logits[:, -1]) sequences.append(scores[-1].argmax(dim=-1)) sequences = torch.cat([input_ids, torch.stack(sequences, dim=1)], dim=1) scores = tuple(scores) out = model.generate(input_ids=input_ids, max_length=max_length, fused_ft_kernel=fused_ft_kernel, return_dict_in_generate=True, output_scores=True) if not rotary: out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) out_ref = model_ref.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) print(f'Scores max diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'Scores mean diff: {(torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') print(f'HF fp16 max diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()}') print(f'HF fp16 mean diff: {(torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().mean().item()}') assert torch.all(out.sequences == sequences) assert torch.allclose(torch.stack(out.scores, dim=1), torch.stack(scores, dim=1), rtol=rtol, atol=atol) if not rotary: assert torch.all(out.sequences == out_ref.sequences) assert torch.all(out.sequences == out_hf.sequences) assert (torch.stack(out.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item() < 3 * (torch.stack(out_hf.scores, 1) - torch.stack(out_ref.scores, 1)).abs().max().item()