/****************************************************************************** * Copyright (c) 2011-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ #include #include #include "fmha.h" void set_params(Fused_multihead_attention_fprop_params ¶ms, // sizes const size_t b, const size_t s, const size_t h, const size_t d, // device pointers void *qkv_packed_d, void *cu_seqlens_d, void *o_packed_d, void *o_tmp_d, void *do_packed_d, void *s_d, void *softmax_lse_d, void *dsoftmax_sum_d, float p_dropout, float softmax_scale, bool is_causal) { Data_type acc_type = DATA_TYPE_FP32; Data_type data_type = DATA_TYPE_FP16; // Reset the parameters memset(¶ms, 0, sizeof(params)); // Set the pointers and strides. params.qkv_ptr = qkv_packed_d; params.qkv_stride_in_elts = h * 3 * d; params.qkv_stride_in_bytes = get_size_in_bytes(h * 3 * d, data_type); params.o_ptr = o_packed_d; params.o_stride_in_elts = h * d; params.o_stride_in_bytes = get_size_in_bytes(h * d, data_type); params.do_ptr = do_packed_d; params.o_tmp_ptr = o_tmp_d; params.cu_seqlens = static_cast(cu_seqlens_d); // S = softmax(P) params.s_ptr = s_d; params.s_stride_in_bytes = get_size_in_bytes(b * h * s, data_type); // Softmax sum params.softmax_lse_ptr = softmax_lse_d; params.dsoftmax_sum = dsoftmax_sum_d; // Set the dimensions. params.b = b; params.h = h; params.s = s; params.d = d; // Set the different scale values. // const float scale_bmm1 = 1.f / sqrtf(d); const float scale_bmm1 = softmax_scale; constexpr float scale_softmax = 1.f; constexpr float scale_bmm2 = 1.f; params.scale_bmm1f = scale_bmm1; set_alpha(params.scale_bmm1, scale_bmm1, data_type); set_alpha(params.scale_softmax, scale_softmax, acc_type); set_alpha(params.scale_bmm2, scale_bmm2, data_type); // Set this to probability of keeping an element to simplify things. params.p_dropout = 1.f - p_dropout; // Convert p from float to int so we don't have to convert the random uint to float to compare. // [Minor] We want to round down since when we do the comparison we use <= instead < params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0)); params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0)); params.rp_dropout = 1.f / params.p_dropout; TORCH_CHECK(p_dropout < 1.f); set_alpha(params.scale_dropout, params.rp_dropout, data_type); params.is_causal = is_causal; } std::vector mha_fwd(const at::Tensor &qkv, // total x num_heads x 3 x head_size, total := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens, // b+1 const float p_dropout, const int max_seq_len, const float softmax_scale, const bool zero_tensors, const bool is_causal, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); bool is_sm75 = dprops->major == 7 && dprops->minor == 5; bool is_sm80 = dprops->major == 8 && dprops->minor == 0; TORCH_CHECK((dprops->major == 8 && dprops->minor >= 0) || is_sm75); auto stream = at::cuda::getCurrentCUDAStream().stream(); bool is_dropout = p_dropout > 0.0; Launch_params launch_params(dprops, stream, is_dropout, return_softmax); TORCH_CHECK(qkv.is_cuda()) TORCH_CHECK(cu_seqlens.is_cuda()) TORCH_CHECK(qkv.is_contiguous()) TORCH_CHECK(cu_seqlens.is_contiguous()) TORCH_CHECK(cu_seqlens.dim() == 1); TORCH_CHECK(qkv.dim() == 4); const auto sizes = qkv.sizes(); TORCH_CHECK(sizes[THREE_DIM] == 3); const int batch_size = cu_seqlens.numel() - 1; const int total = sizes[TOTAL_DIM]; const int num_heads = sizes[H_DIM]; const int head_size = sizes[D_DIM]; TORCH_CHECK(batch_size > 0); TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128); // int base_N = head_size == 16 ? 512 : (head_size == 128 ? 128 : 256); int base_N = ((head_size == 128 && (is_dropout || !is_sm80)) || (is_sm75 && head_size == 64 && is_dropout)) ? 128 : 256; // int base_N = 256; int seq_len = 512; if( max_seq_len <= 128 ) { seq_len = 128; } else if( max_seq_len <= 256 ) { seq_len = 256; } else { seq_len = ((max_seq_len + base_N - 1) / base_N) * base_N; } bool loop = seq_len > base_N; auto opts = qkv.options(); auto ctx = torch::empty({ total, num_heads, head_size }, opts); at::Tensor o_tmp; if (loop) { o_tmp = torch::empty({total, num_heads, head_size}, opts.dtype(at::kFloat)); } auto softmax_lse = torch::empty({batch_size, num_heads, seq_len}, opts.dtype(at::kFloat)); // auto softmax_lse = torch::full({batch_size, num_heads, seq_len}, -std::numeric_limits::infinity(), opts.dtype(at::kFloat)); at::Tensor s; if (return_softmax) { s = torch::empty({ batch_size, num_heads, seq_len, seq_len }, opts); // s = torch::ones({ batch_size, num_heads, seq_len, seq_len }, opts) * 10000.0; } if( zero_tensors ) { ctx.zero_(); softmax_lse.fill_(-std::numeric_limits::infinity()); if (loop) { o_tmp.zero_(); } if (return_softmax) {s.zero_();} } auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); set_params(launch_params.params, batch_size, seq_len, num_heads, head_size, qkv.data_ptr(), cu_seqlens.data_ptr(), ctx.data_ptr(), loop ? o_tmp.data_ptr() : nullptr, nullptr, return_softmax ? s.data_ptr() : nullptr, softmax_lse.data_ptr(), nullptr, p_dropout, softmax_scale, is_causal); run_fmha_fp16_sm80(launch_params, /*configure=*/ true); // number of times random will be generated per thread, to offset philox counter in thc random // state int64_t counter_offset = launch_params.elts_per_thread; at::PhiloxCudaState rng_engine_inputs; if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); launch_params.params.philox_args = gen->philox_cuda_state(counter_offset); } run_fmha_fp16_sm80(launch_params, /*configure=*/false); std::vector result = {ctx, softmax_lse}; if (return_softmax) {result.push_back(s);} return result; } std::vector mha_bwd(const at::Tensor &dout, // total x num_heads, x head_size const at::Tensor &qkv, // total x num_heads x 3 x head_size, total := \sum_{i=0}^{b} s_i const at::Tensor &out, // total x num_heads x head_size at::Tensor &softmax, // b x h x s x s softmax and dmask - will be overwritten with dP const at::Tensor &softmax_lse, // b x h x s softmax logsumexp const at::Tensor &cu_seqlens, // b+1 const float p_dropout, // probability to drop const float softmax_scale, const int max_seq_len, // max sequence length to choose the kernel const bool zero_tensors, const bool is_causal, c10::optional gen_ ) { auto dprops = at::cuda::getCurrentDeviceProperties(); bool is_sm75 = dprops->major == 7 && dprops->minor == 5; TORCH_CHECK((dprops->major == 8 && dprops->minor >= 0) || is_sm75); auto launch = &run_fmha_dgrad_fp16_sm80; bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(qkv.dtype() == torch::kFloat16); TORCH_CHECK(dout.dtype() == torch::kFloat16); TORCH_CHECK(softmax.dtype() == torch::kFloat16); TORCH_CHECK(cu_seqlens.dtype() == torch::kInt32); TORCH_CHECK(qkv.is_cuda()); TORCH_CHECK(cu_seqlens.is_cuda()); TORCH_CHECK(qkv.is_contiguous()); TORCH_CHECK(cu_seqlens.is_contiguous()); TORCH_CHECK(cu_seqlens.dim() == 1); TORCH_CHECK(qkv.dim() == 4); const auto sizes = qkv.sizes(); TORCH_CHECK(sizes[THREE_DIM] == 3); const int batch_size = cu_seqlens.numel() - 1; const int total = sizes[TOTAL_DIM]; const int num_heads = sizes[H_DIM]; const int head_size = sizes[D_DIM]; TORCH_CHECK(batch_size > 0); TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64 || head_size == 128); // int base_N = head_size == 16 ? 512 : (head_size == 128 ? 128 : 256); int base_N = (head_size == 128 || (is_sm75 && head_size == 64)) ? 128 : 256; int seq_len = 512; if( max_seq_len <= 128 ) { seq_len = 128; } else if( max_seq_len <= 256 ) { seq_len = 256; } else { seq_len = ((max_seq_len + base_N - 1) / base_N) * base_N; } bool loop = seq_len > base_N; auto dqkv = torch::empty_like(qkv); auto opts = qkv.options(); // auto softmax_lse = // torch::empty({batch_size, num_heads, seq_len}, opts.dtype(at::kFloat)); auto softmax_d = torch::empty({batch_size, num_heads, seq_len}, opts.dtype(at::kFloat)); // softmax.zero_(); // torch::nn::init::ones_(softmax); // torch::nn::init::ones_(dqkv); at::Tensor dq_tmp; if (loop) { dq_tmp = torch::empty({total, num_heads, head_size}, opts.dtype(at::kFloat)); } if( zero_tensors ) { dqkv.zero_(); softmax_d.zero_(); if (loop) { dq_tmp.zero_(); } } Fused_multihead_attention_fprop_params params; set_params(params, batch_size, seq_len, num_heads, head_size, qkv.data_ptr(), cu_seqlens.data_ptr(), out.data_ptr(), loop ? dq_tmp.data_ptr() : nullptr, dout.data_ptr(), softmax.data_ptr(), // softmax gets overwritten by dP! softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, is_causal); auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We're gonna reset the rng state in Python after this kernel, so the counter offset // here doesn't matter at all. We just choose an arbitrary number; int64_t counter_offset = 4; if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } Data_type acc_type = DATA_TYPE_FP32; params.dqkv_ptr = dqkv.data_ptr(); launch(params, stream); return { dqkv, softmax, softmax_d }; // std::vector result = {dqkv, softmax, softmax_d}; // if (loop) { // result.push_back(dq_tmp); // } // return result; } std::vector mha_fwd_block(const at::Tensor &qkv, // total x num_heads x 3 x head_size, total := \sum_{i=0}^{b} s_i const at::Tensor &cu_seqlens, // b+1 const at::Tensor &blockmask, // (seqlen / 256, seqlen / 16) const float p_dropout, const int max_seq_len, const float softmax_scale, const bool is_causal, const bool return_softmax, c10::optional gen_) { auto dprops = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dprops->major == 8 && dprops->minor >= 0); auto stream = at::cuda::getCurrentCUDAStream().stream(); bool is_dropout = p_dropout > 0.0; Launch_params launch_params(dprops, stream, is_dropout, return_softmax); bool loop = false; int seq_len = 256; if( max_seq_len > 256 ) { seq_len = ((max_seq_len + 256 - 1) / 256) * 256; loop = true; } TORCH_CHECK(qkv.is_cuda()) TORCH_CHECK(cu_seqlens.is_cuda()) TORCH_CHECK(blockmask.is_cuda()) TORCH_CHECK(qkv.is_contiguous()) TORCH_CHECK(cu_seqlens.is_contiguous()) TORCH_CHECK(blockmask.is_contiguous()) TORCH_CHECK(cu_seqlens.dim() == 1); TORCH_CHECK(qkv.dim() == 4); TORCH_CHECK(blockmask.dim() == 2); const auto sizes = qkv.sizes(); TORCH_CHECK(sizes[THREE_DIM] == 3); const int batch_size = cu_seqlens.numel() - 1; const int total = sizes[TOTAL_DIM]; const int num_heads = sizes[H_DIM]; const int head_size = sizes[D_DIM]; TORCH_CHECK(batch_size > 0); TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64); auto opts = qkv.options(); auto ctx = torch::zeros({ total, num_heads, head_size }, opts); at::Tensor o_tmp; if (loop) { // o_tmp = torch::zeros({total, num_heads, head_size}, opts.dtype(at::kFloat)); o_tmp = torch::empty({total, num_heads, head_size}, opts.dtype(at::kFloat)); } // auto softmax_lse = torch::full({batch_size, num_heads, seq_len}, -std::numeric_limits::infinity(), opts.dtype(at::kFloat)); auto softmax_lse = torch::empty({batch_size, num_heads, seq_len}, opts.dtype(at::kFloat)); at::Tensor s; if (return_softmax) { s = torch::zeros({ batch_size, num_heads, seq_len, seq_len }, opts); } auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); set_params(launch_params.params, batch_size, seq_len, num_heads, head_size, qkv.data_ptr(), cu_seqlens.data_ptr(), ctx.data_ptr(), loop ? o_tmp.data_ptr() : nullptr, nullptr, return_softmax ? s.data_ptr() : nullptr, softmax_lse.data_ptr(), nullptr, p_dropout, softmax_scale, is_causal); launch_params.params.blockmask = static_cast(blockmask.data_ptr()); run_fmha_block_fp16_sm80(launch_params, /*configure=*/ true); // number of times random will be generated per thread, to offset philox counter in thc random // state int64_t counter_offset = launch_params.elts_per_thread; at::PhiloxCudaState rng_engine_inputs; if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); launch_params.params.philox_args = gen->philox_cuda_state(counter_offset); } run_fmha_block_fp16_sm80(launch_params, /*configure=*/false); std::vector result = {ctx, softmax_lse}; if (return_softmax) {result.push_back(s);} return result; } std::vector mha_bwd_block(const at::Tensor &dout, // total x num_heads, x head_size const at::Tensor &qkv, // total x num_heads x 3 x head_size, total := \sum_{i=0}^{b} s_i const at::Tensor &out, // total x num_heads x head_size at::Tensor &softmax, // b x h x s x s softmax and dmask - will be overwritten with dP const at::Tensor &softmax_lse, // b x h x s softmax logsumexp const at::Tensor &cu_seqlens, // b+1 const at::Tensor &blockmask, // (seqlen / 256, seqlen / 16) const float p_dropout, // probability to drop const float softmax_scale, const int max_seq_len, // max sequence length to choose the kernel const bool is_causal, c10::optional gen_ ) { auto dprops = at::cuda::getCurrentDeviceProperties(); TORCH_CHECK(dprops->major == 8 && dprops->minor >= 0); bool loop = false; int seq_len = 256; auto launch = &run_fmha_block_dgrad_fp16_sm80; if (max_seq_len > 256) { seq_len = ((max_seq_len + 256 - 1) / 256) * 256; loop = true; } bool is_dropout = p_dropout > 0.0; auto stream = at::cuda::getCurrentCUDAStream().stream(); TORCH_CHECK(qkv.dtype() == torch::kFloat16); TORCH_CHECK(dout.dtype() == torch::kFloat16); TORCH_CHECK(softmax.dtype() == torch::kFloat16); TORCH_CHECK(cu_seqlens.dtype() == torch::kInt32); TORCH_CHECK(blockmask.dtype() == torch::kInt32); TORCH_CHECK(qkv.is_cuda()); TORCH_CHECK(cu_seqlens.is_cuda()); TORCH_CHECK(blockmask.is_cuda()); TORCH_CHECK(qkv.is_contiguous()); TORCH_CHECK(cu_seqlens.is_contiguous()); TORCH_CHECK(blockmask.is_contiguous()); TORCH_CHECK(cu_seqlens.dim() == 1); TORCH_CHECK(qkv.dim() == 4); TORCH_CHECK(blockmask.dim() == 2); const auto sizes = qkv.sizes(); TORCH_CHECK(sizes[THREE_DIM] == 3); const int batch_size = cu_seqlens.numel() - 1; const int total = sizes[TOTAL_DIM]; const int num_heads = sizes[H_DIM]; const int head_size = sizes[D_DIM]; TORCH_CHECK(batch_size > 0); TORCH_CHECK(head_size == 16 || head_size == 32 || head_size == 64); auto dqkv = torch::zeros_like(qkv); auto opts = qkv.options(); auto softmax_d = torch::empty({batch_size, num_heads, seq_len}, opts.dtype(at::kFloat)); at::Tensor dq_tmp; if (loop) { // dq_tmp = torch::zeros({total, num_heads, head_size}, opts.dtype(at::kFloat)); dq_tmp = torch::empty({total, num_heads, head_size}, opts.dtype(at::kFloat)); } Fused_multihead_attention_fprop_params params; set_params(params, batch_size, seq_len, num_heads, head_size, qkv.data_ptr(), cu_seqlens.data_ptr(), out.data_ptr(), loop ? dq_tmp.data_ptr() : nullptr, dout.data_ptr(), softmax.data_ptr(), // softmax gets overwritten by dP! softmax_lse.data_ptr(), softmax_d.data_ptr(), p_dropout, softmax_scale, is_causal); params.blockmask = static_cast(blockmask.data_ptr()); auto gen = at::get_generator_or_default( gen_, at::cuda::detail::getDefaultCUDAGenerator()); // We're gonna reset the rng state in Python after this kernel, so the counter offset // here doesn't matter at all. We just choose an arbitrary number; int64_t counter_offset = 4; if( is_dropout ) { // See Note [Acquire lock when using random generators] std::lock_guard lock(gen->mutex_); params.philox_args = gen->philox_cuda_state(counter_offset); } Data_type acc_type = DATA_TYPE_FP32; params.dqkv_ptr = dqkv.data_ptr(); launch(params, stream); return { dqkv, softmax, softmax_d }; // std::vector result = {dqkv, softmax, softmax_d}; // if (loop) { // result.push_back(dq_tmp); // } // return result; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.doc() = "Fused Multi-head Self-attention"; m.def("fwd", &mha_fwd, "Forward pass"); m.def("bwd", &mha_bwd, "Backward pass"); m.def("fwd_block", &mha_fwd_block, "Forward pass (blocksparse)"); m.def("bwd_block", &mha_bwd_block, "Backward pass (blocksparse)"); }