import re import pytest import torch from flash_attn.models.gpt import GPTLMHeadModel, remap_state_dict_hf_gpt2 from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel as GPT2LMHeadModelHF @pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_state_dict(model_name): config = GPT2Config.from_pretrained(model_name) pretrained_state_dict = remap_state_dict_hf_gpt2(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_non_optimized(model_name): """Check that our implementation of GPT2 (without any optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = GPT2Config.from_pretrained(model_name) model = GPTLMHeadModel.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda() model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" ) out = model.transformer(input_ids) out_hf = model_hf.transformer(input_ids).last_hidden_state out_ref = model_ref.transformer(input_ids).last_hidden_state print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item() @pytest.mark.parametrize("model_name", ["gpt2", "gpt2-medium"]) # @pytest.mark.parametrize('model_name', ["gpt2"]) def test_gpt2_optimized(model_name): """Check that our implementation of GPT2 (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 config = GPT2Config.from_pretrained(model_name) vocab_size_og = config.vocab_size config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True config.residual_in_fp32 = True config.pad_vocab_size_multiple = 8 model = GPTLMHeadModel.from_pretrained(model_name, config) model = model.cuda().to(dtype=dtype) model_ref = GPT2LMHeadModelHF.from_pretrained(model_name).cuda() model_hf = GPT2LMHeadModelHF.from_pretrained(model_name).cuda().to(dtype=dtype) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 4 max_seqlen = 512 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") input_ids = torch.randint( 0, vocab_size_og, (batch_size, max_seqlen), dtype=torch.long, device="cuda" ) out = model.transformer(input_ids) out_hf = model_hf.transformer(input_ids).last_hidden_state out_ref = model_ref.transformer(input_ids).last_hidden_state print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits[..., :vocab_size_og] logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item()