import re import pytest import torch from flash_attn.models.gpt import GPTLMHeadModel from flash_attn.models.opt import opt_config_to_gpt2_config, remap_state_dict_hf_opt from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import OPTConfig from transformers.models.opt.modeling_opt import OPTForCausalLM @pytest.mark.parametrize( "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"] ) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_state_dict(model_name): config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) pretrained_state_dict = remap_state_dict_hf_opt(state_dict_from_pretrained(model_name), config) model = GPTLMHeadModel(config) state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize( "model_name", ["facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b"] ) # @pytest.mark.parametrize('model_name', ["facebook/opt-350m"]) def test_opt_optimized(model_name): """Check that our implementation of OPT (without all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ dtype = torch.float16 device = "cuda" config = opt_config_to_gpt2_config(OPTConfig.from_pretrained(model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = True config.fused_dropout_add_ln = True # Only prenorm supports residual_in_fp32 config.residual_in_fp32 = getattr(config, "prenorm", True) config.pad_vocab_size_multiple = 8 model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype) model_ref = OPTForCausalLM.from_pretrained(model_name).to(device=device) model_hf = OPTForCausalLM.from_pretrained(model_name, torch_dtype=dtype).to(device=device) model.eval() model_ref.eval() model_hf.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device="cuda") input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device="cuda" ) if model_name != "facebook/opt-350m": # The OPT-350m projects the embeddings to dimension 512 out = model.transformer(input_ids) out_hf = model_hf.model(input_ids).last_hidden_state out_ref = model_ref.model(input_ids).last_hidden_state print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() logits = model(input_ids).logits logits_hf = model_hf(input_ids).logits logits_ref = model_ref(input_ids).logits print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item()