# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_mha_parallel.py import math import torch import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.modules.mha import MHA, ParallelMHA is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('head_dim', [64, 128]) # @pytest.mark.parametrize('head_dim', [64]) @pytest.mark.parametrize('embed_dim', [1024, 4096]) # @pytest.mark.parametrize('embed_dim', [1024]) def test_mha_parallel(embed_dim, head_dim, world_size, dtype): assert embed_dim % head_dim == 0 num_heads = embed_dim // head_dim assert num_heads % world_size == 0 rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 x_pt = torch.randn(batch_size * seqlen, embed_dim, device=device, dtype=dtype, requires_grad=True) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(x_pt) / 32 x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() model_pt = MHA(embed_dim, num_heads, rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, device=device, dtype=dtype) partition_dim = embed_dim // world_size model = ParallelMHA(embed_dim, num_heads, parallel_state.get_tensor_model_parallel_group(), rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, device=device, dtype=dtype) with torch.no_grad(): model.Wqkv.weight.copy_( rearrange(rearrange(model_pt.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i') ) model.Wqkv.bias.copy_( rearrange(rearrange(model_pt.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)') ) model.out_proj.weight.copy_( model_pt.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) if rank == 0: model.out_proj.bias.copy_(model_pt.out_proj.bias) out = model(x, seqlen=seqlen) out_pt = rearrange(model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen)), 'b s d -> (b s) d') partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim], rtol=rtol, atol=atol ) out_pt.backward(g) out.backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim]) parallel_state.destroy_model_parallel() assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim], rtol=rtol, atol=atol ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.Wqkv.weight.grad, rearrange(rearrange(model_pt.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i'), rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.Wqkv.bias.grad, rearrange(rearrange(model_pt.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)'), rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.out_proj.weight.grad, model_pt.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.out_proj.bias.grad, model_pt.out_proj.bias.grad, rtol=rtol, atol=atol * 5)