# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn from einops import repeat class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None): """ If max_position_embeddings <= 0, there's no position embeddings """ super().__init__() self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape input_embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = repeat(torch.arange(seqlen, dtype=torch.long, device=input_ids.device), 's -> b s', b=batch_size) position_embeddings = self.position_embeddings(position_ids) return input_embeddings + position_embeddings else: return input_embeddings