# Copyright (c) 2023, Tri Dao. import math import re from collections import OrderedDict import torch import torch.nn.functional as F from transformers import GPT2Config, OPTConfig def remap_state_dict_opt(state_dict, config): def key_mapping_model(key): key = re.sub(r'^model.decoder.', 'transformer.', key) # The OPT-350m model uses '^decoder' instead of '^model.decoder' key = re.sub(r'^decoder.', 'transformer.', key) return key state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items()) # Word embedding and position embedding def key_mapping_emb(key): key = re.sub(r'^transformer.embed_tokens.', 'transformer.embeddings.word_embeddings.', key) # The OPT-350m model uses has project_in and project_out key = re.sub(r'^transformer.project_in.', 'transformer.embeddings.project_in.', key) key = re.sub(r'^transformer.project_out.', 'project_out.', key) key = re.sub(r'^transformer.embed_positions.', 'transformer.embeddings.position_embeddings.', key) return key state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items()) # OPT uses the first 2 indices of pos_emb for padding tokens pos_embeddings = state_dict.pop('transformer.embeddings.position_embeddings.weight') state_dict['transformer.embeddings.position_embeddings.weight'] = pos_embeddings[2:] word_embeddings = state_dict.pop('transformer.embeddings.word_embeddings.weight') # It's possible that vocab_size is padded to be a multiple of 8, for example. pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad( word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) ) state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight'] # LayerNorm def key_mapping_ln(key): key = re.sub(r'^transformer.final_layer_norm.', r'transformer.ln_f.', key) # The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm' key = re.sub(r'^transformer.layer_norm.', r'transformer.ln_f.', key) key = re.sub(r'^transformer.layers.(\d+).self_attn_layer_norm.', r'transformer.layers.\1.norm1.', key) key = re.sub(r'^transformer.layers.(\d+).final_layer_norm.', r'transformer.layers.\1.norm2.', key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): return re.sub(r'^transformer.layers.(\d+).fc(1|2).', r'transformer.layers.\1.mlp.fc\2.', key) state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention for l in range(config.n_layer): Wq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.weight') Wk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.weight') Wv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.weight') bq = state_dict.pop(f'transformer.layers.{l}.self_attn.q_proj.bias') bk = state_dict.pop(f'transformer.layers.{l}.self_attn.k_proj.bias') bv = state_dict.pop(f'transformer.layers.{l}.self_attn.v_proj.bias') state_dict[f'transformer.layers.{l}.mixer.Wqkv.weight'] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f'transformer.layers.{l}.mixer.Wqkv.bias'] = torch.cat( [bq, bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub(r'^transformer.layers.(\d+).self_attn.out_proj.', r'transformer.layers.\1.mixer.out_proj.', key) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) return state_dict def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config: assert opt_config.layerdrop == 0.0 assert opt_config.layer_norm_elementwise_affine word_embed_proj_dim = (None if opt_config.word_embed_proj_dim == opt_config.hidden_size else opt_config.word_embed_proj_dim) return GPT2Config( vocab_size=opt_config.vocab_size, n_positions=opt_config.max_position_embeddings, n_embd=opt_config.hidden_size, n_layer=opt_config.num_hidden_layers, n_head=opt_config.num_attention_heads, n_inner=opt_config.ffn_dim, activation_function=opt_config.activation_function, resid_pdrop=opt_config.dropout, # HF's implementation of OPT doesn't seem to have embedding dropout embd_pdrop=opt_config.dropout, attn_pdrop=opt_config.attention_dropout, initializer_range=opt_config.init_std, bos_token_id=opt_config.bos_token_id, eos_token_id=opt_config.eos_token_id, # These are new arguments not in the original GPT2Config prenorm=opt_config.do_layer_norm_before, word_embed_proj_dim=word_embed_proj_dim )