import math import pytest import torch import torch.nn.functional as F from einops import rearrange from flash_attn.losses.cross_entropy import CrossEntropyLossApex is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 @pytest.mark.parametrize( "dtype", [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else []) ) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize("inplace_backward", [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize("smoothing", [0.0, 0.9]) @pytest.mark.parametrize("vocab_size", [50257]) def test_cross_entropy_loss_apex(vocab_size, smoothing, inplace_backward, dtype): device = "cuda" rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = torch.randn( batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True ) x = x_pt.detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(label_smoothing=smoothing) model = CrossEntropyLossApex(label_smoothing=smoothing, inplace_backward=inplace_backward) out = model(x, y) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)