# Copyright (c) 2022, Tri Dao. # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py import torch from torch.nn import init import dropout_layer_norm def _dropout_add_layer_norm_forward(x0, x1, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() x0mat = x0.view((-1, hidden_size)) x1mat = x1.view((-1, hidden_size)) if x1 is not None else None rowscale = rowscale.view(-1) if rowscale is not None else None zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd( x0mat, x1mat, gamma, beta, rowscale, colscale, None, None, dropout_p, epsilon, 1.0, 0, None, residual_in_fp32 ) # dmask is None if dropout_p == 0.0 # xmat is None if dropout_p == 0.0 and x1 is None and residual_dtype != input_dtype return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma def _dropout_add_layer_norm_backward(dz, dx, x, x0, dmask, mu, rsigma, gamma, rowscale, colscale, dropout_p, has_residual): """ Assume that arguments are contiguous dx == None means that it was a post-norm architecture (x = drop(x0) + x1 was not returned in the fwd). x0 must not be None if we have colscale. """ hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(xmat.shape) dxmat = dx.view(xmat.shape) if dx is not None else None x0mat = x0.view((-1, hidden_size)) if x0 is not None else None rowscale = rowscale.view(-1) if rowscale is not None else None if colscale is not None: assert x0 is not None, 'x0 is required to compute the gradient of colscale' dx0mat, dx1mat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd( dzmat, dxmat, xmat, x0mat, dmask, mu, rsigma, gamma, rowscale, colscale, None, None, dropout_p, 1.0, 0, has_residual ) # dx1mat is None if not has_residual if colscale is None: return dx0mat, dx1mat, dgamma, dbeta else: dcolscale = rest[0] return dx0mat, dx1mat, dgamma, dbeta, dcolscale def _dropout_add_layer_norm_subset_forward(x0, x1, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() x0mat = x0.view((-1, hidden_size)) x1mat = x1.view((-1, hidden_size)) if x1 is not None else None x0_subset = x0_subset.view(-1) if x0_subset is not None else None out_subset = out_subset.view(-1) if out_subset is not None else None zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd( x0mat, x1mat, gamma, beta, None, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, None, residual_in_fp32 ) # dmask is None if dropout_p == 0.0 # xmat is None if dropout_p == 0.0 and x1 is None and residual_dtype != input_dtype return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma def _dropout_add_layer_norm_subset_backward(dz, dx, x, x0, dmask, mu, rsigma, gamma, colscale, x0_subset, out_subset, dropout_p, rowscale_const, x0_numrows, has_residual): """ Assume that arguments are contiguous dx == None means that it was a post-norm architecture (x = drop(x0) + x1 was not returned in the fwd). x0 must not be None if we have colscale. """ hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(-1, hidden_size) dxmat = dx.view(xmat.shape) if dx is not None else None x0mat = x0.view((-1, hidden_size)) if x0 is not None else None x0_subset = x0_subset.view(-1) if x0_subset is not None else None out_subset = out_subset.view(-1) if out_subset is not None else None if colscale is not None: assert x0 is not None, 'x0 is required to compute the gradient of colscale' dx0mat, dx1mat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd( dzmat, dxmat, xmat, x0mat, dmask, mu, rsigma, gamma, None, colscale, x0_subset, out_subset, dropout_p, rowscale_const, x0_numrows, has_residual ) # dx1mat is None if not has_residual if colscale is None: return dx0mat, dx1mat, dgamma, dbeta else: dcolscale = rest[0] return dx0mat, dx1mat, dgamma, dbeta, dcolscale class DropoutAddLayerNormFn(torch.autograd.Function): @staticmethod def forward(ctx, x0, x1, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32, prenorm=False, return_dmask=False): x0 = x0.contiguous() x1 = x1.contiguous() if x1 is not None else None gamma = gamma.contiguous() beta = beta.contiguous() rowscale = rowscale.contiguous() if rowscale is not None else None colscale = colscale.contiguous() if colscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward( x0, x1, gamma, beta, rowscale, colscale, dropout_p, epsilon, residual_in_fp32 ) # Only need to save x0 if we need to compute gradient wrt colscale x0_saved = x0 if colscale is not None else None ctx.save_for_backward(xmat.view(x0.shape), x0, dmask, gamma, mu, rsigma, rowscale, colscale) ctx.prenorm = prenorm ctx.dropout_p = dropout_p ctx.has_residual = x1 is not None if not return_dmask: return (zmat.view(x0.shape) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape))) else: dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return ((zmat.view(x0.shape), dmask) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape), dmask)) @staticmethod def backward(ctx, dz, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! dx = args[0].contiguous() if ctx.prenorm else None x, x0, dmask, gamma, mu, rsigma, rowscale, colscale = ctx.saved_tensors # x0 is None if colscale is None dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dx1mat, dgamma, dbeta, *rest = _dropout_add_layer_norm_backward( dz, dx, x, x0, dmask, mu, rsigma, gamma, rowscale, colscale, dropout_p, has_residual ) dx0 = dx0mat.view(x.shape) dx1 = dx1mat.view(x.shape) if dx1mat is not None else None dcolscale = rest[0] if colscale is not None else None return dx0, dx1, dgamma, dbeta, None, dcolscale, None, None, None, None, None class DropoutAddLayerNormSubsetFn(torch.autograd.Function): @staticmethod def forward(ctx, x0, x1, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32, prenorm=False, return_dmask=False): x0 = x0.contiguous() x1 = x1.contiguous() if x1 is not None else None gamma = gamma.contiguous() beta = beta.contiguous() colscale = colscale.contiguous() if colscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_subset_forward( x0, x1, gamma, beta, colscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32 ) # Only need to save x0 if we need to compute gradient wrt colscale x0_saved = x0 if colscale is not None else None x_shape = (-1, *x0.shape[1:]) ctx.save_for_backward(xmat.view(x_shape), x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset) ctx.prenorm = prenorm ctx.dropout_p = dropout_p ctx.rowscale_const = rowscale_const ctx.x0_numrows = x0.shape[:-1].numel() ctx.has_residual = x1 is not None z_shape = (-1, *x0.shape[1:]) if not return_dmask: return (zmat.view(z_shape) if not prenorm else (zmat.view(z_shape), xmat.view(x0.shape))) else: z = zmat.view(z_shape) dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return ((z, dmask) if not prenorm else (z, xmat.view(x_shape), dmask)) @staticmethod def backward(ctx, dz, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! dx = args[0].contiguous() if ctx.prenorm else None x, x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset = ctx.saved_tensors # x0 is None if colscale is None dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dx1mat, dgamma, dbeta, *rest = _dropout_add_layer_norm_subset_backward( dz, dx, x, x0, dmask, mu, rsigma, gamma, colscale, x0_subset, out_subset, dropout_p, ctx.rowscale_const, ctx.x0_numrows, has_residual ) dx0 = dx0mat.view(-1, *x.shape[1:]) dx1 = dx1mat.view(x.shape) if dx1mat is not None else None dcolscale = rest[0] if colscale is not None else None return (dx0, dx1, dgamma, dbeta, dcolscale, None, None, None, None, None, None, None, None, None) def dropout_add_layer_norm(x0, x1, weight, bias, dropout_p, epsilon, rowscale=None, layerscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if x1 is None. Otherwise residual dtype is x1.dtype. """ return DropoutAddLayerNormFn.apply( x0, x1, weight, bias, rowscale, layerscale, dropout_p, epsilon, residual_in_fp32, prenorm, return_dropout_mask ) def dropout_add_layer_norm_subset(x0, x1, weight, bias, dropout_p, epsilon, layerscale=None, x0_subset=None, out_subset=None, rowscale_const=1.0, out_numrows=0, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if x1 is None. Otherwise residual dtype is x1.dtype. """ return DropoutAddLayerNormSubsetFn.apply( x0, x1, weight, bias, layerscale, x0_subset, out_subset, dropout_p, epsilon, rowscale_const, out_numrows, residual_in_fp32, prenorm, return_dropout_mask ) class DropoutAddLayerNorm(torch.nn.Module): def __init__(self, hidden_size, prenorm=False, p=0.0, eps=1e-5, residual_in_fp32=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.prenorm = prenorm self.p = p self.epsilon = eps self.residual_in_fp32 = residual_in_fp32 self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, x0, x1=None): return dropout_add_layer_norm(x0, x1, self.weight, self.bias, self.p if self.training else 0.0, self.epsilon, prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)