# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None): """ If max_position_embeddings <= 0, there's no position embeddings """ super().__init__() self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class BertEmbeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, type_vocab_size, padding_idx=None): """ If max_position_embeddings <= 0, there's no position embeddings If type_vocab_size <= 0, there's no token type embeddings """ super().__init__() self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx) self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim) if self.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim) def forward(self, input_ids, position_ids=None, token_type_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) token_type_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if self.type_vocab_size > 0: if token_type_ids is None: token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = embeddings + token_type_embeddings return embeddings