/****************************************************************************** * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao. ******************************************************************************/ #pragma once #include #include "cute/tensor.hpp" #include "cutlass/gemm/collective/collective_builder.hpp" #include "named_barrier.hpp" #include "utils.h" namespace flash { using namespace cute; // template template struct CollectiveEpilogueFwd { using Element = typename Ktraits::Element; static constexpr int kBlockM = Ktraits::kBlockM; static constexpr int kBlockN = Ktraits::kBlockN; static constexpr int kHeadDim = Ktraits::kHeadDim; // using Element = Element_; // static constexpr int kBlockM = kBlockM_; // static constexpr int kBlockN = kBlockN_; // static constexpr int kHeadDim = kHeadDim_; using TileShape_MNK = Shape, Int, Int>; // static constexpr int kNWarps = kNWarps_; static constexpr int kNWarps = Ktraits::kNWarps; static constexpr int kNThreads = kNWarps * cutlass::NumThreadsPerWarp; static constexpr bool Is_WS = kNWarps >= 12; static constexpr int NumCopyThreads = !Is_WS ? 0 : cutlass::NumThreadsPerWarpGroup; static constexpr int NumMmaThreads = kNThreads - NumCopyThreads; using GmemTiledCopyOTMA = cute::SM90_TMA_STORE; // These are for storing the output tensor without TMA (e.g., for setting output to zero) static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element); static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad"); static constexpr int kGmemThreadsPerRow = kHeadDim / kGmemElemsPerLoad; static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow"); using GmemLayoutAtom = Layout, Int>, Stride, _1>>; using GmemTiledCopyO = decltype( make_tiled_copy(Copy_Atom{}, GmemLayoutAtom{}, Layout>>{})); // Val layout, 8 or 16 vals per store using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>()); using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_MNK{}))); using SmemCopyAtomO = Copy_Atom; using SharedStorage = cute::array_aligned>; using ShapeO = cute::Shape; // (seqlen_q, d, head, batch) using StrideO = cute::Stride; using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen_q, head, batch) using TMA_O = decltype(make_tma_copy( GmemTiledCopyOTMA{}, make_tensor(make_gmem_ptr(static_cast(nullptr)), repeat_like(StrideO{}, int32_t(0)), StrideO{}), SmemLayoutO{}, select<0, 2>(TileShape_MNK{}), _1{})); // no mcast for O // Host side kernel arguments struct Arguments { Element* ptr_O; ShapeO const shape_O; StrideO const stride_O; float* ptr_LSE; StrideLSE const stride_LSE; }; // Device side kernel params struct Params { Element* ptr_O; ShapeO const shape_O; StrideO const stride_O; float* ptr_LSE; StrideLSE const stride_LSE; TMA_O tma_store_O; }; static Params to_underlying_arguments(Arguments const& args) { Tensor mO = make_tensor(make_gmem_ptr(args.ptr_O), args.shape_O, args.stride_O); TMA_O tma_store_O = make_tma_copy( GmemTiledCopyOTMA{}, mO, SmemLayoutO{}, select<0, 2>(TileShape_MNK{}), _1{}); // no mcast for O return {args.ptr_O, args.shape_O, args.stride_O, args.ptr_LSE, args.stride_LSE, tma_store_O}; } /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance CUTLASS_DEVICE static void prefetch_tma_descriptors(Params const& epilogue_params) { cute::prefetch_tma_descriptor(epilogue_params.tma_store_O.get_tma_descriptor()); } template CUTLASS_DEVICE void store(Params const& epilogue_params, FrgTensorO const& tOrO, FrgTensorLSE const& lse, SharedStorage& shared_storage, TiledMma tiled_mma, int thread_idx, cute::tuple const& block_coord ) { auto [m_block, bidh, bidb] = block_coord; Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{}); auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma); auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx); Tensor tOrO_out = flash::convert_type(tOrO); Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N) Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N) // Make sure all WGs have finished reading V cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast(FwdNamedBarriers::ValueEmpty) /*id*/); cute::copy(smem_tiled_copy_O, taccOrO, taccOsO); cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); Tensor mO = epilogue_params.tma_store_O.get_tma_tensor(epilogue_params.shape_O); Tensor gO = local_tile(mO(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K) auto block_tma_O = epilogue_params.tma_store_O.get_slice(_0{}); Tensor tOgO = block_tma_O.partition_D(gO); // (TMA, TMA_M, TMA_K) Tensor tOsO = block_tma_O.partition_S(sO); // (TMA, TMA_M, TMA_K) auto shape_LSE = select<0, 2, 3>(epilogue_params.shape_O); Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), shape_LSE, epilogue_params.stride_LSE); Tensor gLSE = local_tile(mLSE(_, bidh, bidb), Shape>{}, make_coord(m_block)); Tensor caccO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})); auto thread_mma = tiled_mma.get_thread_slice(thread_idx); Tensor taccOcO = thread_mma.partition_C(caccO); // (MMA,MMA_M,MMA_K) static_assert(decltype(size<0, 0>(taccOcO))::value == 2); static_assert(decltype(size<0, 1>(taccOcO))::value == 2); // taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices. Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{}); CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M if (get<1>(taccOcO_row(_0{})) == 0) { #pragma unroll for (int mi = 0; mi < size(lse); ++mi) { const int row = get<0>(taccOcO_row(mi)); if (row < get<0>(shape_LSE) - m_block * kBlockM) { gLSE(row) = lse(mi); } } } if (cutlass::canonical_warp_idx_sync() == kNWarps - 1) { cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier); int const lane_predicate = cute::elect_one_sync(); if (lane_predicate) { cute::copy(epilogue_params.tma_store_O, tOsO, tOgO); tma_store_arrive(); } } } CUTLASS_DEVICE void store_tail() { tma_store_wait<0>(); } // Write 0 to output and -inf to LSE CUTLASS_DEVICE void store_zero( Params const& epilogue_params, int thread_idx, cute::tuple const& block_coord ) { auto [m_block, bidh, bidb] = block_coord; Tensor mO = make_tensor(make_gmem_ptr(epilogue_params.ptr_O), epilogue_params.shape_O, epilogue_params.stride_O); Tensor gO = local_tile(mO(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K) auto shape_LSE = select<0, 2, 3>(epilogue_params.shape_O); Tensor mLSE = make_tensor(make_gmem_ptr(epilogue_params.ptr_LSE), shape_LSE, epilogue_params.stride_LSE); Tensor gLSE = local_tile(mLSE(_, bidh, bidb), Shape>{}, make_coord(m_block)); GmemTiledCopyO gmem_tiled_copy_O; auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx); Tensor tOgO = gmem_thr_copy_O.partition_D(gO); Tensor tOrO = make_fragment_like(tOgO); clear(tOrO); // Construct identity layout for sO Tensor cO = cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})); // (BLK_M,BLK_K) -> (blk_m,blk_k) // Repeat the partitioning with identity layouts Tensor tOcO = gmem_thr_copy_O.partition_D(cO); Tensor tOpO = make_tensor(make_shape(size<2>(tOgO))); #pragma unroll for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(epilogue_params.shape_O); } // Clear_OOB_K must be false since we don't want to write zeros to gmem flash::copy( gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, get<0>(epilogue_params.shape_O) - m_block * kBlockM ); static_assert(kBlockM <= NumMmaThreads); if (thread_idx < get<0>(shape_LSE) - m_block * kBlockM) { gLSE(thread_idx) = INFINITY; } } }; } // namespace flash