import math from functools import partial import pytest import torch import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.ops.triton.layernorm import layer_norm_fn, layer_norm_ref, rms_norm_ref is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8 @pytest.mark.parametrize("is_rms_norm", [False, True]) # @pytest.mark.parametrize("is_rms_norm", [True]) @pytest.mark.parametrize("has_residual", [True, False]) # @pytest.mark.parametrize("has_residual", [True]) @pytest.mark.parametrize( "weight_dtype", [torch.float32, torch.float16] + ([torch.bfloat16] if is_sm8x else []) ) # @pytest.mark.parametrize("weight_dtype", [torch.float32]) @pytest.mark.parametrize( "input_dtype,residual_dtype", [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []), ) # @pytest.mark.parametrize("input_dtype,residual_dtype", [(torch.bfloat16, torch.float32)]) @pytest.mark.parametrize("hidden_size", [192, 2048, 2560, 3000, 8192]) # @pytest.mark.parametrize("hidden_size", [256]) def test_layer_norm( hidden_size, input_dtype, residual_dtype, weight_dtype, has_residual, is_rms_norm ): device = "cuda" if any(x == torch.bfloat16 for x in [input_dtype, residual_dtype, weight_dtype]): atol = 5e-2 elif any(x == torch.float16 for x in [input_dtype, residual_dtype, weight_dtype]): atol = 5e-3 else: atol = 1e-4 # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 # batch_size = 1 # seqlen = 1 layer_norm_ref_fn = layer_norm_ref if not is_rms_norm else rms_norm_ref allclose = ( lambda x, x_pt, x_ref, atol=atol: (x - x_ref).abs().max() <= 2 * (x_pt - x_ref).abs().max() + atol ) x0 = torch.randn( batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True ) x0_pt = x0.detach().clone().requires_grad_() x0_ref = x0.detach().clone().requires_grad_() if has_residual: res = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) res_pt = res.detach().clone().requires_grad_() res_ref = res.detach().clone().requires_grad_() else: res, res_pt, res_ref = None, None, None weight = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) if not is_rms_norm: bias = torch.randn(hidden_size, device=device, dtype=weight_dtype, requires_grad=True) else: bias = None weight_pt = weight.detach().clone().requires_grad_() weight_ref = weight.detach().clone().requires_grad_() bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, *rest = layer_norm_fn(x0, weight, bias, residual=res, eps=1e-6, is_rms_norm=is_rms_norm) out_pt, *rest_pt = layer_norm_ref_fn(x0_pt, weight_pt, bias_pt, residual=res_pt, eps=1e-6) out_ref, *rest_ref = layer_norm_ref_fn( x0_ref, weight_ref, bias_ref, residual=res_ref, eps=1e-6, upcast=True ) if has_residual: residual = rest[0] residual_pt = rest_pt[0] residual_ref = rest_ref[0] residual_ref = x0_ref + res_ref assert out.dtype == input_dtype if has_residual: assert residual.dtype == residual_dtype assert allclose(residual, residual_pt, residual_ref) assert allclose(out, out_pt, out_ref) g = torch.randn_like(out) / batch_size if not has_residual: out.backward(g) out_pt.backward(g) out_ref.backward(g) else: (out * F.sigmoid(residual)).backward(g) (out_pt * F.sigmoid(residual_pt)).backward(g) (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g) assert allclose(x0.grad, x0_pt.grad, x0_ref.grad) if has_residual: assert allclose(res.grad, res_pt.grad, res_ref.grad) assert allclose(weight.grad, weight_pt.grad, weight_ref.grad) if bias is not None: assert allclose(bias.grad, bias_pt.grad, bias_ref.grad)