# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import pytest from einops import rearrange from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.modules.mha import MHA, ParallelMHA from flash_attn.modules.mlp import FusedMLP, ParallelFusedMLP from flash_attn.modules.block import Block from flash_attn.utils.distributed import allreduce_sequence_parallel_grad is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('sequence_parallel', [True, False]) # @pytest.mark.parametrize('sequence_parallel', [True]) @pytest.mark.parametrize('dim', [1024]) def test_block_parallel(dim, sequence_parallel, world_size, dtype): head_dim = 64 assert dim % head_dim == 0 num_heads = dim // head_dim assert num_heads % world_size == 0 rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 2 seqlen = 1024 assert (batch_size * seqlen) % world_size == 0 x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True) residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True) # We need to generate g here so that all processes get the same gradient, # as rank 0 will have an extra bias that changes the RNG. # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(x_pt) / 32 if sequence_parallel: x = tensor_parallel.scatter_to_sequence_parallel_region(x_pt).detach().clone().requires_grad_() residual = tensor_parallel.scatter_to_sequence_parallel_region(residual_pt).detach().clone().requires_grad_() else: x = x_pt.detach().clone().requires_grad_() residual = residual_pt.detach().clone().requires_grad_() mixer_cls_pt = partial(MHA, num_heads=num_heads, rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, device=device, dtype=dtype) mlp_cls_pt = partial(FusedMLP, hidden_features=4 * dim, device=device, dtype=dtype) norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype) model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True) with torch.no_grad(): nn.init.normal_(model_pt.norm1.weight) nn.init.normal_(model_pt.norm1.bias) nn.init.normal_(model_pt.norm2.weight) nn.init.normal_(model_pt.norm2.bias) mixer_cls = partial(ParallelMHA, num_heads=num_heads, process_group=parallel_state.get_tensor_model_parallel_group(), rotary_emb_dim=int(head_dim // 2), use_flash_attn=True, sequence_parallel=sequence_parallel, device=device, dtype=dtype) mlp_cls = partial(ParallelFusedMLP, hidden_features=4 * dim, process_group=parallel_state.get_tensor_model_parallel_group(), sequence_parallel=sequence_parallel, device=device, dtype=dtype) model = Block(dim, mixer_cls, mlp_cls, norm_cls, fused_dropout_add_ln=True, sequence_parallel=sequence_parallel, mark_shared_params=True) partition_dim = dim // world_size partition_hidden_dim = 4 * dim // world_size with torch.no_grad(): model.mixer.Wqkv.weight.copy_( rearrange(rearrange(model_pt.mixer.Wqkv.weight, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i') ) model.mixer.Wqkv.bias.copy_( rearrange(rearrange(model_pt.mixer.Wqkv.bias, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)') ) model.mixer.out_proj.weight.copy_( model_pt.mixer.out_proj.weight[:, rank * partition_dim:(rank + 1) * partition_dim] ) if rank == 0: model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias) model.mlp.fc1.weight.copy_( model_pt.mlp.fc1.weight[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) model.mlp.fc1.bias.copy_( model_pt.mlp.fc1.bias[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) model.mlp.fc2.weight.copy_( model_pt.mlp.fc2.weight[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim] ) if rank == 0: model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias) model.norm1.weight.copy_(model_pt.norm1.weight) model.norm1.bias.copy_(model_pt.norm1.bias) model.norm2.weight.copy_(model_pt.norm2.weight) model.norm2.bias.copy_(model_pt.norm2.bias) mixer_kwargs = {'seqlen': seqlen} out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs) out_pt, out_residual_pt = model_pt(rearrange(x_pt, '(b s) d -> b s d', s=seqlen), rearrange(residual_pt, '(b s) d -> b s d', s=seqlen)) out_pt, out_residual_pt = [rearrange(x, 'b s d -> (b s) d') for x in [out_pt, out_residual_pt]] partition_batch_dim = batch_size * seqlen // world_size assert torch.allclose( out, out_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_pt, rtol=rtol, atol=atol ) assert torch.allclose( out_residual, out_residual_pt[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else out_residual_pt, rtol=rtol, atol=atol ) (out_pt + 2 * out_residual_pt).backward(g) (out + 2 * out_residual).backward(g[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else g) allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group()) parallel_state.destroy_model_parallel() assert torch.allclose( x.grad, x_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else x_pt.grad, rtol=rtol, atol=atol / 10 # magnitude of x.grad is quite small ) assert torch.allclose( residual.grad, residual_pt.grad[rank * partition_batch_dim:(rank + 1) * partition_batch_dim] if sequence_parallel else residual_pt.grad, rtol=rtol, atol=atol ) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose( model.mixer.Wqkv.weight.grad, rearrange(rearrange(model_pt.mixer.Wqkv.weight.grad, '(three o) i -> three o i', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o i -> (three o) i'), rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.mixer.Wqkv.bias.grad, rearrange(rearrange(model_pt.mixer.Wqkv.bias.grad, '(three o) -> three o', three=3)[:, rank * partition_dim:(rank + 1) * partition_dim], 'three o -> (three o)'), rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.mixer.out_proj.weight.grad, model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim:(rank + 1) * partition_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.mixer.out_proj.bias.grad, model_pt.mixer.out_proj.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose( model.mlp.fc1.weight.grad, model_pt.mlp.fc1.weight.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 10 ) assert torch.allclose( model.mlp.fc1.bias.grad, model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 5 ) assert torch.allclose( model.mlp.fc2.weight.grad, model_pt.mlp.fc2.weight.grad[:, rank * partition_hidden_dim:(rank + 1) * partition_hidden_dim], rtol=rtol, atol=atol * 10 ) if rank == 0: assert torch.allclose(model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)