#pragma once #ifdef OLD_GENERATOR_PATH #include #else #include #endif #include // For at::cuda::philox::unpack #include #include "ln.h" namespace layer_norm { template __global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) void ln_fwd_kernel(FwdParams params) { enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA }; enum { WARPS_N = Ktraits::WARPS_N }; enum { WARPS_M = Ktraits::WARPS_M }; enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW }; enum { VEC_COLS_PER_LDG = Ktraits::VEC_COLS_PER_LDG }; enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW }; enum { LDGS = Ktraits::LDGS }; enum { NUM_ELTS = Ktraits::NUM_ELTS }; enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW }; using input_t = typename Ktraits::input_t; using residual_t = typename Ktraits::residual_t; using output_t = typename Ktraits::output_t; using index_t = typename Ktraits::index_t; using compute_t = typename Ktraits::compute_t; using mask_t = typename Ktraits::mask_t; using Ivec = typename Ktraits::Ivec; using Rvec = typename Ktraits::Rvec; using Ovec = typename Ktraits::Ovec; using Wvec = typename Ktraits::Wvec; using Cvec = typename Ktraits::Cvec; using Mvec = typename Ktraits::Mvec; using Stats = typename Ktraits::Stats; using stats_t = typename Stats::stats_t; constexpr bool save_x = Has_residual || Is_dropout || !(std::is_same::value); extern __shared__ char smem_[]; const index_t tidx = threadIdx.x; const index_t bidn = blockIdx.x % CTAS_PER_ROW; const index_t bidm = blockIdx.x / CTAS_PER_ROW; const index_t lane = tidx % THREADS_PER_WARP; const index_t warp = tidx / THREADS_PER_WARP; const index_t warp_m = warp / WARPS_N; const index_t warp_n = warp % WARPS_N; const index_t r = bidm * ROWS_PER_CTA + warp_m; const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane; Stats stats(params, bidm, bidn, warp_m, warp_n, lane, smem_); compute_t *mu_ptr = static_cast(params.mu); compute_t *rs_ptr = static_cast(params.rs); const input_t *rowscale = static_cast(params.rowscale); // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Dropout.cu curandStatePhilox4_32_10_t state; if (Is_dropout) { auto seeds = at::cuda::philox::unpack(params.philox_args); const index_t tidx_global = blockIdx.x * blockDim.x + threadIdx.x; curand_init(std::get<0>(seeds), tidx_global, std::get<1>(seeds), &state); } Wvec gamma[LDGS]; Wvec beta[LDGS]; index_t idx = c; #pragma unroll for( int it = 0; it < LDGS; it++ ) { gamma[it].load_from(params.gamma, idx); beta[it].load_from(params.beta, idx); idx += VEC_COLS_PER_LDG; } constexpr compute_t rn = 1.f / compute_t(Ktraits::COLS); for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) { const compute_t rowscale_val = Has_rowscale ? compute_t(rowscale[row]) : 1.0f; index_t idx = row * Ktraits::VEC_COLS + c; compute_t xf[LDGS * NUM_ELTS]; #pragma unroll for( int it = 0; it < LDGS; it++ ) { Ivec x0; Rvec x1; Rvec x; Mvec dmask; x0.load_from(params.x0, idx); if (Has_residual) { x1.load_from(params.x1, idx); } #pragma unroll for( int jt = 0; jt < NUM_ELTS; jt++ ) { // TD [2022-04-22]: We're memory bound, not compute bound, so we don't need to use // the more efficient curand_uniform4. mask_t keep = true; if (Is_dropout) { float rand = curand_uniform(&state); keep = mask_t(rand <= params.dropout_keep_p); } compute_t x0_ij = Has_rowscale ? compute_t(x0.data.elt[jt]) * rowscale_val : compute_t(x0.data.elt[jt]); compute_t x_ij; if (Has_residual) { compute_t x1_ij = compute_t(x1.data.elt[jt]); x_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) + x1_ij : x1_ij; } else { x_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) : 0.f; } if (save_x) { x.data.elt[jt] = x_ij; } xf[it * NUM_ELTS + jt] = x_ij; if (Is_dropout) { dmask.data.elt[jt] = keep; } } if (save_x) { x.store_to(params.x, idx); } if (Is_dropout) { dmask.store_to(params.dmask, idx); } idx += VEC_COLS_PER_LDG; } stats_t s = stats.compute(xf, rn); compute_t mu = layer_norm::Get<0>::of(s); compute_t m2 = layer_norm::Get<1>::of(s); if( bidn == 0 && warp_n == 0 && lane == 0 ) { mu_ptr[row] = mu; } compute_t rs = rsqrtf(rn * m2 + params.epsilon); if( bidn == 0 && warp_n == 0 && lane == 0 ) { rs_ptr[row] = rs; } idx = row * Ktraits::VEC_COLS + c; #pragma unroll for( int it = 0; it < LDGS; it++ ) { Ovec z; #pragma unroll for( int jt = 0; jt < NUM_ELTS; jt++ ) { output_t y_ij = output_t(rs * (xf[it * NUM_ELTS + jt] - mu)); output_t g_ij = gamma[it].data.elt[jt]; output_t b_ij = beta[it].data.elt[jt]; z.data.elt[jt] = (g_ij * y_ij + b_ij); } z.store_to(params.z, idx); idx += VEC_COLS_PER_LDG; } } } } // namespace layer_norm