# Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import re import logging from functools import partial from collections.abc import Sequence from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from transformers import BertConfig from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions from transformers.models.bert.modeling_bert import BertForPreTrainingOutput from einops import rearrange from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp, FusedMLP from flash_attn.modules.block import Block from flash_attn.modules.embedding import BertEmbeddings from flash_attn.bert_padding import unpad_input, pad_input from flash_attn.bert_padding import index_first_axis, index_first_axis_residual from flash_attn.utils.pretrained import state_dict_from_pretrained try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm except ImportError: dropout_add_layer_norm, layer_norm = None, None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = None logger = logging.getLogger(__name__) def create_mixer_cls(config, cross_attn=False, return_residual=False): use_flash_attn = getattr(config, 'use_flash_attn', False) fused_bias_fc = getattr(config, 'fused_bias_fc', False) mixer_cls = partial(MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn, return_residual=return_residual) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size fused_mlp = getattr(config, 'fused_mlp', False) if fused_mlp: assert config.hidden_act in ['gelu_new', 'gelu_fast'], ('fused_mlp only ' 'supports approximate gelu') if not fused_mlp: approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none' mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual) else: if FusedMLP is None: raise ImportError('fused_dense is not installed') mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial(FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual) return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, 'last_layer_subset', False) cross_attn=last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False), return_residual=return_residual) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class BertEncoder(nn.Module): def __init__(self, config: BertConfig): super().__init__() self.use_flash_attn = getattr(config, 'use_flash_attn', False) self.layers = nn.ModuleList([create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None or not self.use_flash_attn: mixer_kwargs = ({'key_padding_mask': key_padding_mask} if key_padding_mask is not None else None) for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero(subset_mask[key_padding_mask], as_tuple=False).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = {'x_kv': hidden_states, 'cu_seqlens': subset_cu_seqlens, 'max_seqlen': max_seqlen_in_batch, 'cu_seqlens_k': cu_seqlens, 'max_seqlen_k': max_seqlen_in_batch} hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) return hidden_states class BertPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none' self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias, self.layer_norm.eps) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, 'fused_bias_fc', False) if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(nn.Module): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ def __init__(self, config, *inputs, **kwargs): super().__init__() if not isinstance(config, BertConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `BertConfig`. " "To create a model from a Google pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ )) self.config = config @classmethod def from_pretrained(cls, model_name, config, *inputs, **kwargs): """ Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. Download and cache the pre-trained model file if needed. Params: pretrained_model_name_or_path: either: - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance - a path or url to a pretrained model archive containing: . `bert_config.json` a configuration file for the model . `model.chkpt` a TensorFlow checkpoint *inputs, **kwargs: additional input for the specific Bert class (ex: num_labels for BertForSequenceClassification) """ # Instantiate model. model = cls(config, *inputs, **kwargs) load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False) logger.info(load_return) return model class BertModel(BertPreTrainedModel): def __init__(self, config: BertConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += (self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)) self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') assert config.position_embedding_type == 'absolute' assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast'] self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size, config.max_position_embeddings, config.type_vocab_size, padding_idx=config.pad_token_id) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm(hidden_states, self.emb_ln.weight, self.emb_ln.bias, self.emb_ln.eps) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros(batch_size, seqlen, dtype=torch.bool, device=input_ids.device) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask) if masked_tokens_mask is None: pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = (self.pooler(pool_input, pool=False) if self.pooler is not None else None) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config: BertConfig): super().__init__(config) # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # (around 15%) to the classifier heads. self.dense_seq_output = getattr(config, 'dense_seq_output', False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, 'last_layer_subset', False) if self.last_layer_subset: assert self.dense_seq_output, 'last_layer_subset requires dense_seq_output' use_xentropy = getattr(config, 'use_xentropy', False) if use_xentropy and CrossEntropyLoss is None: raise ImportError('xentropy_cuda is not installed') loss_cls = (nn.CrossEntropyLoss if not use_xentropy else partial(CrossEntropyLoss, inplace_backward=True)) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) self.mlm_loss = loss_cls(ignore_index=0) self.nsp_loss = loss_cls(ignore_index=-1) # Initialize weights and apply final processing self.apply(partial(_init_weights, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, labels=None, next_sentence_label=None): """ If labels are provided, they must be 0 for masked out tokens (as specified in the attention mask). Outputs: if `labels` and `next_sentence_label` are not `None`: Outputs the total_loss which is the sum of the masked language modeling loss and the next sentence classification loss. if `labels` or `next_sentence_label` is `None`: Outputs a tuple comprising - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and - the next sentence classification logits of shape [batch_size, 2]. """ masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask.bool() if attention_mask is not None else None, masked_tokens_mask=masked_tokens_mask ) sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'), masked_token_idx) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: if self.dense_seq_output and labels is not None: # prediction_scores are already flattened masked_lm_loss = self.mlm_loss(prediction_scores, labels.flatten()[masked_token_idx]) else: masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'), rearrange(labels, '... -> (...)')) next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'), rearrange(next_sentence_label, '... -> (...)')) total_loss = masked_lm_loss.float() + next_sentence_loss.float() return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, ) def remap_state_dict(state_dict, config): # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key) key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key) return key state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()) # Layers def key_mapping_layers(key): return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key) key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)', r'bert.encoder.layers.\1.norm1.\2', key) key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)', r'bert.encoder.layers.\1.norm2.\2', key) key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)', r'cls.predictions.transform.layer_norm.\1', key) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)', r'bert.encoder.layers.\1.mlp.fc1.\2', key) key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)', r'bert.encoder.layers.\1.mlp.fc2.\2', key) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, 'last_layer_subset', False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight') Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight') Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight') bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias') bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias') bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias') if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat([bq, bk, bv], dim=0) else: state_dict[f'bert.encoder.layers.{d}.mixer.Wq.weight'] = Wq state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.weight'] = torch.cat( [Wk, Wv], dim=0 ) state_dict[f'bert.encoder.layers.{d}.mixer.Wq.bias'] = bq state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.bias'] = torch.cat([bk, bv], dim=0) def key_mapping_attn(key): return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)', r'bert.encoder.layers.\1.mixer.out_proj.\2', key) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key) state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items()) # Word embedding pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict['bert.embeddings.word_embeddings.weight'] state_dict['bert.embeddings.word_embeddings.weight'] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict['cls.predictions.decoder.weight'] state_dict['cls.predictions.decoder.weight'] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict['cls.predictions.decoder.bias'] state_dict['cls.predictions.decoder.bias'] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) return state_dict