# Copyright (c) 2023, Tri Dao. # To run the huggingface implementation, we first need to convert the weights: # https://github.com/huggingface/transformers/pull/21955 # python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR$/llama/7B-hf # and repeat for 13B, 30B, 65B import os import time from pathlib import Path current_dir = Path(__file__).parent.absolute() import torch import pytest from transformers import LlamaConfig, LlamaTokenizer from transformers.models.llama.modeling_llama import LlamaForCausalLM from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp from flash_attn.models.llama import remap_state_dict_meta_llama, llama_config_to_gpt2_config from flash_attn.models.llama import config_from_checkpoint, state_dicts_from_checkpoint from flash_attn.utils.pretrained import state_dict_from_pretrained from flash_attn.utils.generation import update_graph_cache @pytest.mark.parametrize('model_name', ["7B"]) def test_llama_state_dict(model_name): checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR', current_dir.parent.parent / 'checkpoints')) / 'llama' config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name)) ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config) model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow state_dict = model.state_dict() rotary_inv_freq_keys = {f'transformer.layers.{l}.mixer.rotary_emb.inv_freq' for l in range(config.n_layer)} assert state_dict.keys() == pretrained_state_dict.keys() | rotary_inv_freq_keys for k in state_dict.keys() - rotary_inv_freq_keys: assert state_dict[k].shape == pretrained_state_dict[k].shape @pytest.mark.parametrize('model_name', ["7B", "13B"]) def test_llama_optimized(model_name): """Check that our implementation of LLaMa (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR', current_dir.parent.parent / 'checkpoints')) / 'llama' dtype = torch.float16 device = 'cuda' config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts] pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict, strict=False) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Without device_map, the model is loaded on the CPU, which is very slow # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', device_map='auto') model_ref.eval() with torch.no_grad(): out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map={"": device}) model_hf.eval() out_hf = model_hf.model(input_ids).last_hidden_state logits_hf = model_hf(input_ids).logits del model_hf print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item() # torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel" @pytest.mark.skip(reason="Tensor Parallel is not implemented for GatedMLP yet") @pytest.mark.parametrize('world_size', [2]) @pytest.mark.parametrize('model_name', ["13B"]) def test_llama_parallel(model_name, world_size): """Check that our implementation of LLaMa (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ from apex.transformer import parallel_state checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR', current_dir.parent.parent / 'checkpoints')) / 'llama' dtype = torch.float16 device = 'cuda' config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts] pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config) model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank), strict=False) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Without device_map, the model is loaded on the CPU, which is very slow model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', device_map='auto') model_ref.eval() with torch.no_grad(): out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map="auto") model_hf.eval() out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device) logits_hf = model_hf(input_ids).logits.to(device=device) del model_hf print(f'Output max diff: {(out - out_ref).abs().max().item()}') print(f'Output mean diff: {(out - out_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}') assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}') print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}') print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}') print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}') assert (logits - logits_ref).abs().max().item() < 3 * (logits_hf - logits_ref).abs().max().item() @pytest.mark.parametrize('model_name', ["7B"]) def test_llama_generation(model_name): checkpoint_path = Path(os.environ.get('CHECKPOINT_DIR', current_dir.parent.parent / 'checkpoints')) / 'llama' dtype = torch.float16 device = 'cuda' config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name)) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf') eos_token_id = tokenizer.eos_token_id torch.manual_seed(0) batch_size = 1 seqlen = 100 max_length = 150 input_ids = torch.randint(0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device) model_hf = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', torch_dtype=dtype, device_map={"": device}) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate(input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') del model_hf model_ref = LlamaForCausalLM.from_pretrained(Path(checkpoint_path) / f'{model_name}-hf', device_map={"": device}) model_ref.eval() with torch.no_grad(): logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1):-1] del model_ref ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts] pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict, strict=False) model.eval() print('Without CUDA graph') torch.cuda.synchronize() start = time.time() out = model.generate(input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, fused_ft_kernel=True, return_dict_in_generate=True, output_scores=True, timing=True, teacher_outputs=out_hf.sequences) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print('With CUDA graph') torch.cuda.synchronize() start = time.time() out_cg = model.generate(input_ids=input_ids, max_length=max_length, fused_ft_kernel=True, cg=True, return_dict_in_generate=True, output_scores=True, timing=True, teacher_outputs=out_hf.sequences) torch.cuda.synchronize() print(f'Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms') with torch.no_grad(): logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1):-1] logits_hf = torch.stack(out_hf.scores, dim=1) logits = torch.stack(out.scores, dim=1) logits_cg = torch.stack(out_cg.scores, dim=1) del model hf_error = (logits_hf - logits_ref).abs().max().item() # For some reason logits_parallel is off by quite a bit more than 2x assert (logits_parallel - logits_ref).abs().max().item() < 8 * hf_error print(f'HF fp16 logits max diff: {hf_error}') print(f'Logits max diff: {(logits - logits_parallel).abs().max().item() }') assert (logits - logits_parallel).abs().max().item() < 2 * hf_error print(f'Logits CG max diff: {(logits_cg - logits_parallel).abs().max().item() }') assert torch.equal(logits_cg, logits)