# Inspired by https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt/datasets.py # Except we don't pad the last block and don't use overlapping eval # And we return both the input and the target import math import numpy as np import torch class LMDataset(torch.utils.data.Dataset): def __init__(self, tokens, seq_len, drop_last=True): """tokens should be a numpy array """ self.seq_len = seq_len ntokens = len(tokens) if drop_last: ntokens = ((ntokens - 1) // seq_len) * seq_len + 1 self.ntokens = ntokens # We're careful not to slice tokens, since it could be a memmap'ed array or H5 dataset, # and slicing would load it to memory. self.tokens = tokens self.total_sequences = math.ceil((self.ntokens - 1) / self.seq_len) def __len__(self): return self.total_sequences def __getitem__(self, idx): start_idx = idx * self.seq_len seq_len = min(self.seq_len, self.ntokens - 1 - start_idx) data = torch.as_tensor(self.tokens[start_idx:(start_idx + seq_len + 1)].astype(np.int64)) return data[:-1], data[1:].clone()