# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared # to naive implementation. import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import custom_bwd, custom_fwd import fused_dense_lib as fused_dense_cuda from flash_attn.ops.triton.linear import triton_linear_act, triton_dgrad_act @torch.jit.script def sqrelu_fwd(x): r = F.relu(x) return (r * r).to(dtype=x.dtype) @torch.jit.script def sqrelu_bwd(g, x): return (2.0 * g * F.relu(x)).to(dtype=x.dtype) class FusedDenseSqreluDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute act_input and gelu_out in the bwd """ if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, bias1, weight2, bias2 = [a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]] is_bf16 = x.dtype == torch.bfloat16 assert checkpoint_lvl in [0, 1, 2] x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() weight2 = weight2.contiguous() bias2 = bias2.contiguous() batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: save_act_input = checkpoint_lvl != 2 result = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=save_act_input ) if save_act_input: output1, act_input = result else: output1 = result output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, bias1, weight2, act_input) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, bias1, weight2) return output2.reshape(*batch_shape, output2.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl x, weight1, bias1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() is_bf16 = x.dtype == torch.bfloat16 if checkpoint_lvl == 0: act_input, output1 = rest elif checkpoint_lvl == 1: act_input, = rest output1 = sqrelu_fwd(act_input) elif checkpoint_lvl == 2: if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: output1, act_input = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=True ) if is_bf16: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_output1 = grad_output @ weight2 grad_act_input = sqrelu_bwd(grad_output1, act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) else: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_act_input = triton_dgrad_act(grad_output, weight2, activation='squared_relu', act_input=act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply class FusedDenseSqreluDense(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, bias=True, checkpoint_lvl=0, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features assert bias == True, "DenseSqreluDense module without bias is currently not supported" self.checkpoint_lvl = checkpoint_lvl self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, **factory_kwargs) def forward(self, x): assert x.is_cuda return fused_dense_sqrelu_dense_function(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl)